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Abstract:  This study is part of two studies conducted for developing artificial neural-network-
based tools for predicting the thermal and hydraulic performance of micro-pin fin heat sinks used 
for high-heat-flux electronic devices. The thermal design of high-heat-flux electronics requires a 
strong understanding of both pressure drop and heat transfer coefficient. Increasing the pressure 
drop in a cooling system significantly increases the required pumping power and decreases the 
system energy efficiency, in addition to considerably increasing temperature nonuniformity and 
causing reliability issues. Micro-pin fin heat sinks can help in the thermal management of high-
heat-flux electronic systems owing to their effective heat transfer characteristics, namely, a large 
surface area and passage flow turbulence generation, and the requirement of lower pumping power 
compared with the microchannel heat sink.  Studies conducted over the past decade have revealed 
that the thermal and hydraulic performance of micro-pin fin heat sinks are highly dependent on 
their geometric and operational parameters. However, a universal approach to predicting the 
frictional pressure drop, which influences the amount of power required, in pin fin arrays for 
various operating conditions and geometric shapes has not been developed so far. In this study, a 
trained artificial neural network (ANN) was used to develop a universal model for predicting the 
friction factor of micro-pin fin arrays. The friction factor correlation was predicted from 1,651 
experimentally determined friction factor data points obtained from 22 studies. The relationship 
between a wide range of geometric and operating conditions and the hydraulic performance was 
investigated for accurately training the ANN. Furthermore, the universal model was analyzed by 
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comparing values predicted by it with values obtained in other experimental studies. The model 
was found to show superior performance compared with other regression-method-based 
correlations. 
Keywords: micro-pin fin, pressure drop, artificial neural network, multilayer perceptron, thermal 
management, 3D ICs
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Nomenclature

Af surface area of pin fin, m2

Amin minimal transverse area of pin fin array, m2

Cp specific heat, kJ/kg oC
Df hydraulic diameter of pin fin, m 
Dw transverse diameter of pin fin, m 
DL longitudinal diameter of pin fin, m
f friction factor 
h heat transfer coefficient, W/m2 °C 

HDR height-diameter ratio
Hf pin fin height, m 
J Colburn j-factor
k thermal conductivity, W/m °C
L total length of channel, m

mass flow rate, kg/sm

Ntot total number of pin fins 
NL total number of micro-pin fin rows 
Nu Nusselt number 
P wetted perimeter of pin fin, m
Pr Prandtl number
ΔP pressure drop, kPa
q" heat flux, W/m2 
Q volumetric flow rate, m3/s
R coefficient of determination
Re Reynolds number 
SD diagonal spacing, m
SL longitudinal spacing, m
ST transverse spacing, m
Tb micro-pin fin base temperature, °C 
Tf fluid temperature, °C
umax maximum fluid velocity, m/s 
W total width of channel, m

Greek symbols
ρ density of fluid, kg/m3

ηf fin efficiency
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μ dynamic viscosity of fluid, kg/m s
θ percentage of data points predicted within  ±30%
ξ percentage of data points predicted within ±50% 
  
Subscripts
avg average
b base
exp experiment
eff effective
f fluid
h heater
min minimum
max maximum
pred prediction
tot total

1. Introduction

The development of micro-electro-mechanical systems (MEMS) has facilitated the 
development of thermal management techniques for the adequate cooling of high-heat-dissipation 
systems such as computer data centers, avionics systems, electric vehicles, directed-energy lasers, 
and military microwave systems. Examples of typical micromachined techniques are the use of 
microchannels [1,2], spray cooling [3], jet impingement [4], and manifold microchannels [5] for 
active cooling, and the use of heat pipes [6,7] and vapor chambers [8] for passive cooling. Over 
the past few years, 3D circuit architectures have enabled the development of high-density 
transistors for high-performance computing by facilitating the integration of memories, RF devices, 
optoelectronic devices, and MEMS on a single chip. However, this is often thermally limited due 
to the increased heat density per unit area and volume, and therefore, there is a need for more 
compact thermal management solutions with minimal energy consumption [9]. 

Minimizing the pressure drop is an important requirement in the thermal management of 
high-heat-flux electronic systems. Increasing pressure drop is undesirable in electronic systems 
because an appreciable pressure drop significantly increases the required pumping power, and the 
corresponding increase in power consumption compromises the energy efficiency of the entire 
system.  Moreover, drastic pressure changes can severely degrade the reliability of electronic 
devices. In particular, a large pressure drop can adversely affect the reliability of high-heat-flux 
liquid cooling systems since temperature nonuniformity is exacerbated during the phase change 
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process. Therefore, accurately predicting both pressure drop and heat transfer coefficient are of 
paramount importance in the thermal design of electronic systems. 

Over the past few decades, microchannel heat sinks have greatly increased in popularity 
for the thermal management of many thermally limited electronic systems, including 3D stack 
chips, owing to their ease of fabrication, compactness, minimal coolant usage, and outstanding 
heat transfer coefficients. However, the requirement of a small microchannel height for avoiding 
electrical delay in 3D stacks results in an extreme pressure drop, leading to low energy efficiency 
[10,11]. Consequently, microscale pin fins have become indispensable elements for chips 
fabricated by the 3D staking method, and considerable research has been conducted on optimizing 
cooling fluids and the geometric shape and arrangement of microscale pin fins for increasing their 
thermal and hydraulic characteristics [12-43,45,47]. Kosar and Peles [12-14] studied 
hydrodynamic characteristics of micro-pin fin arrays in both staggered and inline configurations 
for pin heights (Hf) of 100–243 μm and pin fin diameters (Df) of 35–100 μm by considering flows 
of deionized water with Reynolds numbers between 3 and 272. They experimentally found that 
densely packed pin fins were more effective for cooling for high-Reynolds-number flows, while 
sparse pin fins were more suited to low-Reynolds-number flows. Prasher et al. [15] performed an 
experimental study with a silicon-based micro-pin fin array in staggered configurations for the Df 
range 55–135 μm and for height-to-diameter ratios (HDR) of 1.3–2.5. They considered flows of 
water and circular- and square-shaped pin fins and compared the results in terms of a thermal 
performance parameter representing the heat transfer per unit of pumping power. Qu and 
colleagues [16,17] studied single- and two-phase convective heat transfers in staggered copper 
micro-pin fin arrays for Df and Hf in the ranges 180–200 μm and 670–683 μm, respectively. They 
developed a friction factor and heat transfer correlations on the basis of experimental data. 
However, the correlations were limited for use in various pin fin arrays because of the absence of 
geometric terms. Tullius et al. [18] optimized micro-pin fin parameters such as fin geometry, fin-
to-channel height ratio, fin spacing, and fin material for water as the working fluid. They showed 
that decreasing the fin width and spacing resulted in the Nusselt number increasing with the 
pressure drop. Furthermore, the use of elliptic and circular fin shapes minimized the pressure drop 
and remarkably improved the heat transfer performance. Wan and Joshi [19] focused on square-
shaped micro-pin fins and compared their hydraulic and thermal performance with those of circular 
micro-pin fins in terms of the friction factor and Colburn j-factor. Their results showed that circular 
pin fins exhibited better performance for given pumping power. Kharangate et al. [20] investigated 
heat transfer and pressure drop characteristics of micro-pin fin arrays by using deionized single-
phase water with Df = 46.5 μm and Hf = 110 μm. They proposed correlations for the Nusselt 
number and friction factor on the basis of experiments and emphasized the necessity for 
developing correlations that were valid for a broad range of pin fin geometries, flow conditions, 
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and working fluids. However, the proposed correlations have limitations for use in diverse 
geometric models because of the lack of geometric terms. Kong et al. [21] studied single-phase 
heat transfer and pressure drop characteristics of embedded silicon micro-pin fin arrays for the Df 
range 45–100 μm and for Hf  ≅ 200 μm by using the dielectric fluid R245fa as the working fluid. 
They showed the influence of Re on the Nusselt number and friction factor based on their results, 
suggesting that there were limitations in deriving the exact correlation owing to the lack of 
experimental values for the Re range 100–400.

Thus, previously developed correlations have limited applicability since their accuracies 
are guaranteed only within the geometric and operational ranges for which they were developed. 
This study is the first part of two studies conducted to develop universal tools based on an artificial 
neural network for predicting the thermal and hydraulic performance of micro-pin fin heat sinks 
with various geometries for various operational ranges, to overcome the limitations of 
conventional regression models. We first aimed to develop a predictive tool for predicting the 
pressure drop in micro-pin fin arrays. We created a consolidated pressure drop database from 
previous relevant micro-pin fin experimental studies, sufficient to cover a wide range of operating 
conditions and geometric characteristics. Subsequently, a multilayer perceptron (MLP), which is 
a type of artificial neural network (ANN), was adopted to predict the Fanning friction factor of 
micro-pin fin arrays. Compared with conventional regression models, MLPs can be used to model 
more complex relations between data and thereby achieve higher accuracy in many prediction 
problems. The friction factor predicted by the MLP was analyzed and compared with the prediction 
accuracies of both previously proposed models and a new regression model developed in the 
present study. 

2. Methods
2.1 Constructed database from relevant studies

We collected experimental data points for frictional pressure drop in micro-pin fin heat 
sinks from literature published in the last two decades. The consolidated database amassed from 
22 sources consisted of 1,651 frictional pressure drop data points, as summarized in Table 1, and 
Fanning friction factor with respect to Reynolds number in the amassed database, as shown in 
Figure 1. Some of the studies are purposely excluded when they included i) micro-pin fin with a 
tip clearance, ii) presence of non-condensables, iii) unclear information in geometrical or 
operational conditions, or iv) parameters that do not fit into the new correlation to be developed. 
We first intentionally excluded all the data points with a tip clearance between pin fins and the 
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Figure 1  A 1,651-point consolidated database for Fanning friction factor in micro-pin fin 
heat sinks from 22 sources. 

top cover of the channel (Moores and Joshi [22] and Mei et al. [23]) or working fluid that included 
any non-condensable gases (Chyu et al. [24] and Jeng et al. [25]) due to its complexity of fluid 
flow and difference in flow characteristics. Irregular shapes of pin fins such as Piranha pin, 
hydrofoil, and oblique fin (Woodcock et al.[26], Sarvey et al. [27], Lee et al.[28]) were also 
excluded due to the difficulty obtaining accurate geometrical dimensions, such as the hydraulic 
diameter and minimum fin spacing. Some studies were also excluded due to insufficient geometry 
information (Liu et al.[29]) or (SL-Df)/Df ≤0 (Brunschwiler [30]), since they could not be predicted 
using existing correlations. In addition, some data of Brunswhiller [30] originate from heat transfer 
structures with pearl chain shapes; because the respective Df cannot be defined, these data were 
excluded. Regarding the results of Rasouli [40] and Kosar&Peles [14], only the visible data could 
be extracted for the analysis. The consolidated data includes geometrical information of hydraulic 
diameter (Df), pin fin height (H), the transverse pitch of the fins (ST), the longitudinal pitch of the 
fins (SL), shapes of pin fins, and flow configurations with the detailed operating conditions of mass 
flow rate ( ), inlet and outlet fluid temperature (Tin, Tout), heat flux (q"), Reynolds number (Re), m

pressure drop (ΔP), and corresponding Fanning friction factor ( f ). The Df, Re, and f were 
determined using the following definitions:
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Figure 2 Geometrical configurations of (a) pin fin shapes and (b) flow types. 

Figure 3 Distribution of data points (a) sources,  (b) friction factor, (c) Re, and (d) working 
fluids, and geometric parameters of  (e) pin fin diameter, (f) pin fin shape, (g) pin fin 

height, and (h) fin configuration. 

Af and P are fin cross-sectional area and perimeter, respectively. umax is the maximum fluid velocity, 
which can be determined as

Inline: , (4-1)T
max in

T f

Su u
S D



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Table 1  Summary of frictional friction factor studies for micro-pin fins included in the 
consolidated database.

Author Shape Config Fluid f Re Df

[mm]
Hf

[mm]
q" 

[W/cm2] Operating condition Total data 
points

Included 
data points Remark

Koşar et al. 
[12] C, D

ST
IN Water 0.27 -

8.25 5 – 100 0.05 - 0.1 0.1 – 0.2 Adiabatic ṁ = 0.47 – 3.9 g/min
Tin = 22 oC 56 56 Converting from Darcy f to 

fanning f

Prasher et al.
[15] C, S ST Water 0.09 -

1.14 40 – 1000 0.055 -
0.15

0.2 –
0.31 Adiabatic

ṁ = 9.98 – 199.6 g/min
ΔP = 0 – 250 kPa

Tin = 50 oC
68 68

Kosar & Peles
[14] C, D ST

IN Water 0.08 -
12.75

3.1 –
271.8

0.035 -
0.1 0.243 Adiabatic 213 213 Converting from Darcy f to 

fanning f
Siu-ho et al.

[16] S ST Water 0.07 -
0.16 120 – 700 0.2 0.67 50 – 100 Tin = 25 oC

ṁ = 83.4 – 644.2 g/min 24 24

Kosar & Peles
[13] C ST Water 0.18 -

2.03 14 – 250 0.1 0.1 –
0.243 Adiabatic ṁ = 0.6 – 9 g/min 59 25 Excluding some uncertain 

data points
Konishi et al.

[17] S ST Water 0.4 - 0.83 35 – 260 0.2 0.67 Adiabatic Tin = 21 – 80 oC
ṁ = 36.6 – 90.6 g/min 42 42

Brunschwiler 
et al. [30] C, DS ST

IN Water 0.02 -
111.57 <1000 0.025 -

0.1 0.1 – 0.2 Adiabatic ṁ = 50 – 210 g/min
Tin = 25 oC 307 264 Pearl chain shape and SL =Df

are excluded
Liu et al.

[31] D ST Water 0.13 -
0.59 80 – 700 0.63 -

0.79 3.0 50 – 350 Q = 5.693 – 57.221 L/h
Tin = 30 – 70 oC 19 19 Converting Darcy to fanning

Mita et al.
[32] C ST Water 0.12 - 0.4 25 – 800 0.18 0.683 Adiabatic Tin = 23 – 80 oC

ṁ = 34.32 – 318.9 g/min 88 88 Converting Darcy to fanning

Renfer et al. 
[33] C IN Water 0.07 -

0.58
14.5 –
270.4 0.1 0.2 Adiabatic 20 20 Calculating f using pressure 

drop
Liu et al.

[34] C ST
IN Water 0.18 - 1.1 8.6 –

396.5 0.5 0.5 Adiabatic 70 70 Converting from W/4L to NL

Liu et al.
[35] C, E, D ST Water 0.06 -

0.85
108.6–
970.2 0.4 - 0.56 0.5 Adiabatic 53 53 Converting Darcy to fanning

Zhao et al. 
[36]

C, S,
D, E, T ST Water 0.02 -

1.39
100 –
2500

0.28 -
0.72 0.5 Adiabatic 97 97 Converting Darcy to fanning

Hua et al.
[37] C ST Water 0.04 -

1.76 70 – 1700 0.4 0.3 Adiabatic ṁ = 0 – 199.6 g/min
ΔP = 0 ~ 40 kPa 36 36 Only new data included.

f from pressure drop & Q

Guan et al. 
[38] C, D, T ST Water 0.18 -

1.21
47 –
922.8

0.28 -
0.72 0.5

*50 – 150 
W 150 150

Calculating f using pressure 
drop

*Heated area not specified
Falsetti et al.

[39] C IN R1234ze (E) 0.09 -
0.18

230 –
2500 0.05 0.1 20 – 44 Tout = 25, 30, 35 oC 29 29 Converting from W/L to NL

Kharangate et 
al. [20] C ST Water 0.2 -0.5 23 - 135 0.047 0.11 24 – 141.4

ṁ = 15.1 – 64.1 g/min
Pin = 144.4 ~ 340.1 kPa
Pout = 132.0 – 201.0 kPa

Tin = 25 oC, Tout = 31.5 – 84.3oC

22 22

Rasouli et al.
[40] D ST FC-72 0.69 -

5.33 15 - 1500 0.18 - 0.2 0.396 –
0.845 Adiabatic Not 

specified 96 Exact number is not specified

Xu_Wu et al.
[41]

C, S, 
D, E, 

SE, VE

ST
IL Water 0.27 -

3.96 40 – 1000 0.1 - 0.15 0.11 Adiabatic ṁ = 3 – 42 g/min
Tin  > 30 oC 163 163 Converting from W/L to NL

Falsetti et al.
[42] C IL

R236fa,
R134a,
R245fa

0.1 - 0.31 230 –
2500 0.05 0.1 20 – 44 Tout = 25 oC 52 52 Converting from W/L to NL

and Ach to Amin

Kong et al.
[21] C ST R245fa 0.03 -

0.51 35 – 500 0.045 -
0.1

0.2 –
0.208 2.5 – 48.7 Tin = 22.2 – 25.3 oC

ṁ = 14.7 – 181.6 g/min 30 30

Jung et al.
[43] C ST FC-72 0.08 -

0.18 81 – 182 0.038 0.091 0 – 60 Q = 70 – 140 g/min 34 34

Staggered: , (4-2) 
max ,

2
T T

max in in
T f D f

S Su u u
S D S D

 
 
   

where uin is the inlet fluid velocity of the channel. This is because, in the case of the inline flow 
configuration, the transversal spacing determines the minimal area through which the flow flows; 
in the case of the staggered flow configuration, the minimal area is determined based on the 
smallest transversal or diagonal spacing. Here, we include two more parameters, DW and DL, which 
represent the projected and longitudinal diameter of pin fin along the flow direction, to distinguish 
cases of the same hydraulic diameter but different in pressure drops, such as ellipse and slant. The 
detailed pin fin shapes (a) and fin configurations (b), used in the consolidated database, are 
illustrated in Figure 2. 

Figure 3 shows the distribution of data according to geometries and operating conditions. 
Figure 3(a) shows the number of data points extracted from each source. Figure 3(b) to (h) show 
number of data points with respect to the Fanning friction factor, Reynolds number, type of 
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working fluid, hydraulic diameter, shape of pin fin, fin height, and fin configuration. In all, the 
consolidated database includes 1,651 data points, which covers the following ranges: 

- Pin fin shape: Circle (C), Square (S), Diamond (D), Ellipse (E), Triangle (T), Dropped 
shape (DS), Slant ellipse (SE), Vertical ellipse (VE)

- Configuration (Config): Staggered (ST), Inline (IL)
- Working fluid: Water, FC72, R1234ze (E), R134a, R236fa, R245fa
- Hydraulic diameter (Df):  30–560 μm
- Height of channel and pin fin (Hf): 91–3,000 μm
- Spacing of Length (SL): 50–1,200 μm
- Spacing of Transverse (ST): 50–1,130 μm
- Channel length (L): 0.51–4 cm 
- Reynolds number (Re): 0–2,500

2.2 Selection of input parameters
We first compared the Pearson correlation coefficient (PCC) of the Fanning friction factor 

to evaluate the linear association between each parameter and the Fanning friction factor. PCC is 
a statistic that measures a linear correlation between two variables, and it is expressed as follows: 

. (5) 
2 2

( )( )

( ) ( )

n

i i
i

xy n n

i i
i i

X X Y Y
R

X X Y Y

 


 



 
R has a value between +1 and −1 where +1, 0, and -1 represent total positive linear correlation, no 
linear correlation, and total negative linear correlation, respectively. Figure 4 shows the PCCs of 
the Fanning friction factor based on micro-pin fin geometrical parameters and Reynolds number. 
Here, we evaluated the R-value separately based on Re ~100, since several micro-pin fin studies 
claimed that there are changes of flow characteristics at Re ~100 [15,19]. As shown in  Figure 4, 
the effects of geometric parameters on the friction factor vary depending on the range of Re. The 
Re dominates the friction factor, and the effects of geometrical parameters are relatively small 
compared to the range of low Re. However, their effects increase significantly for the higher Re 
range (Re>100), while Re is still the most dominant parameter effect on the friction factor. Unlike 
other geometric parameters, the transverse spacing (ST) effect is decreased for the higher Re region. 
It is estimated that the variances of ST show a relatively small difference in the range Re < 100 and 
Re > 100, while the variances of all other parameters more than doubles in the same range. This 
suggests that all the investigated geometric parameters are needed to be considered for predicting 
the friction factor. Consequently, we selected the input parameters of SL, ST, Hf, Df, DW, DL with 
Re for taking into account the effect of a small number of pin fin rows [44]. All the input parameters 
were used in a natural logarithmic form to train and test the MLP prediction model. Log 

https://en.wikipedia.org/wiki/Correlation
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transformation of input and output parameters is known to improve the stability of the model, 
especially when the relationship between input parameters and output parameters is close to 
curvilinear in nature [45].

Figure 4 Pearson correlation coefficients of the Fanning friction factor with respect to pin-
fin parameters. 

2.3 Multilayer perceptron neural network 

Figure 5  Architecture of a multilayer perceptron
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There have been many studies for developing empirical correlations to predict the friction 
factor in micro-pin fin arrays [15-17,19,20,45,47]. Usually, conventional regression models are 
used to find relationships between friction factors, but these correlations show poor predictive 
accuracy in the outranged data of their geometrical or operational conditions. Moreover, 
conventional regression models are not powerful enough to capture all the geometrical and fluid 
flow complexities of the micro-pin fin array. Therefore, we adopted a multilayer perceptron 
(MLP)[48], a type of artificial neural network (ANN) that is widely used to model complex 
interdependent parameters. Training our MLP model with our carefully constructed dataset allows 
for a universal prediction of friction factor in micro-pin fin array that aims to cover a wide range 
of geometrical and operational variations. Figure 5 shows the structure of our MLP with weights, 
bias, layers, functions, and optimizer. 

Our MLP was trained using Tensorflow (version 1.13.1) and Numpy (version 1.17.0). The 
two tools enabled us to handle and train the multidimensional matrix arrays based on Python 
(version 3.6). First, our model minimizes the cost (Ypred - Yexp) with Ypred = XW + b. In this case, 
X is the input parameter of the data, W the weight, and b the bias. In addition, X is a matrix with 
the size (number of data) × (number of parameters), and W is a matrix with the size (number of 
parameters) × (number of nodes). As the number of nodes increases, the learning accuracy and the 
fact whether overfitting or underfitting occurs are determined. After adding a bias to the calculated 
XW matrix value, this value is substituted into the activation function.

The Leaky Rectified Linear Unit (LReLU) [49], which is a modified ReLU [50] function 
that prevents convergence to zero, was used as an activation function; it can be expressed as 
follows: 

 . (6)  0
for

0.2 0
x x

f x
x x


  

The weights were initialized with the He method, which works well for PReLU [51] (similar 
tendency to that of the LReLU), and bias is initialized to zero. The LReLU was used as the 
activation function in the hidden layer, and the identity function was used in the output layer.  The 
outputs were updated with the widely used Adam optimizer [52] during training; it combines  
AdaGrad [53] and RMSprop [54]. When the data amount is limited, cross validation improves 
accuracy and prevents overfitting; for example, the K-fold method is one of the most commonly 
used methods [55],[56]. The method classifies the data into a training set and a test set; in the next 
step, the train data are classified into K groups for cross-validation.  K-fold cross-validation with 
K=5 was used to train and validate the data. In addition, the early stopping method, which is also 
a widely adopted neural network trick, was used to minimize the number of iterations while 



-- 13 --

preventing overfitting to the training data. This method assesses whether the learning process has 
converged and is completed. In our model, the patience is set to 1500, which means that if the 
MAE of the validation set continues to increase 1500 times, the minimum is the point at which the 
training process is considered complete.

The hyperparameters of MLP—the numbers of hidden layers and nodes per layer—were 
chosen from different combinations of hidden layers and nodes per layer based on the predictive 
accuracy of the validation set after training the MLP on the training set. More specifically, the 
consolidated data were randomly divided into three groups— training (72%), validation (18%), 
and test (10%)—, and then the predictive accuracies with different numbers of layers and nodes 
combinations were determined using mean absolute error (MAE) of the validation set. We report 
our final accuracy using the test dataset. The equation for MAE is as follows: 

 (%). (7) exp

exp

1 100pred

n

f f
MAE

n f


 

 
Figure 6 MLP model predicting accuracies with different combinations of numbers of 

nodes and hidden layers.

Figure 6 shows validation MAEs for different combinations of numbers of hidden layers and 
nodes per each hidden layer. For this study, the combinations of 12 layers and 28 nodes set is 
adopted since it shows the low validation MAE of 13.01% while providing a minimum difference 
between training MAE and validation MAE. The detailed MAE data for each combination can be 
found in Table S1 in Supplementary Information (Appendix A).
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3. Results
3.1 Assessment of previous and new regression models 

Here, we compare the MAEs with the predictions of existing correlations and our proposed 
correlation developed from the consolidated database. Table 2 shows a summary of the existing 
friction factor correlations of micro-pin fin available in the literature. The proposed correlation 
was deduced using GRG (generalized reduced gradient) nonlinear regression analysis based on a 
decent algorithm, aiming to minimize MAE [57,58].

Figure 7 shows comparisons of experimentally determined Fanning friction factors with 
predictions of (a) the proposed model, and (b-h) existing correlations available in the literature. 
The proposed regression correlations are separated into two equations, which are divided based on 
Re = 100. The existing correlations are selected as the most relevant and highly cited correlations 
for the micro-pin fin geometries among the correlations suggested by researchers in the last two 
decades. Three different parameters, θ, ξ, and MAE, are used to compare the predicting capabilities 
of each correlation where θ and ξ exhibit the percentage of data points predicted within ±30% and 
±50%, respectively. 

Table 2 Previous micro-pin fin friction factor correlations.
Author(s) Equation Fluid Geometry Operating 

Condition

1 Present 
study

0.214 0.349 0.870 1.656 2.708

0.6683.704 Ref L f T f W L

f f f f f

H S D S D D Df
D D D D D

 


          

                   
         

for Re < 100
Water
FC72
R1234ze
R134a
R236fa
R245fa

Staggered & Inlined
Circle, Square, Triangle, Ellipse, 
Diamond, Dropped shape
25μm < Df < 720μm
Hf = 0.09 – 3 mm
ST = 0.05 – 1.1 mm
SL = 0.05 – 1.2 mm

Re = 0 - 2440
0.620 0.710 0.501 0.050 0.047

0.2940.270 Ref L f T f W L

f f f f f

H S D S D D Df
D D D D D




          

                   
         

for Re > 100

0.244 0.164 0.919 1.851 0.367

0.5391.569 Ref L f T f W L

f f f f f

H S D S D D Df
D D D D D




          

                   
         

for all Re

2 Prasher
et al. [15]

0.640 0.258 0.283

1.350169.82 Ref L f T f

f f f

H S D S D
f

D D D

 


      

           
     

for Re < 100

Water

Staggered, Circle, Square
55 μm < Df < 153 μm
1.3 < Hf /Df < 2.8
2 < ST /Df < 4
2 < SL /Df < 4

Re = 40 - 1000
Tin = 50 oC1.249 0.700 0.360

0.1000.295 Ref L f T f

f f f

H S D S D
f

D D D

 


      

           
     

for Re < 100

3 Siu-ho et
al. [16]

0.5475.023Ref  Water

Staggered, Square
Df = 200 μm
Hf = 670 μm
ST = SL = 400 μm

Re = 37.9 -85.8
Tin = 21 oC

4 Moores
et al. [46]

0.289

0.3902.63 Ref

f

H
f

D


 
   

 
Water

Staggered, Circle
0.5 < Hf /Df < 1.1
1.3 < ST /Df < 1.36
1.13 < SL /Df < 1.18

q’’ = 0.016-0.24 
W/mm2

Re = 200-10,000
Tin = 27 oC

5 Konishi
et al. [17]

0.3502.621Ref  Water

Staggered, Square
Df = 200 μm
1.3 < H/Df < 2.8
2< ST/Df < 4
2< SL/Df < 4

Re = 0 - 300

6 Roth
et al. [47]

0.92312.919Ref  Water

Staggered & inlined, Circle
Hf = 91.1 & 128.9 μm
ST = 91.1 & 129.3 μm
C/Df = 0.56 to 0.77

Re = 9 – 238.4
Tin = 50 oC

7 Wan & 
Joshi [19]

0.356 0.791 0.745

0.5253.355 Ref L f T f

f f f f L

H S D S D Lf
D D D D N

  


      

           
     

for Re < 100

Water

Staggered, Square
Df = 200 μm
Hf /Df = 1.5
ST /Df = 2
SL /Df = 2

Re = 22 - 357
Tin= 25 oC0.051 0.175 0.249

0.5520.586 Ref L f T f

f f f f L

H S D S D Lf
D D D D N

  


      

           
     

for Re > 100

8 Kharangate
et al. [20]

0.5202.5Ref  Water

Staggered, Circle
Df = 46.5 μm
Hf /Df = 2.37
ST /Df = 2.15
SL /Df = 2.15

q’’= 24.0 -141.4 
W/cm2

Re = 23 - 135
Tin = 25 oC



-- 15 --

As shown in Figure 7, Prasher [15] and Moores [45] show very low predictions with 
MAEs of 285.14% and 167.53%, respectively, even though geometric terms are included in the 
correlations. Moores’ correlation [45] exhibited a large MAE since their experimental data 
included both with and without pin fin tip clearance with relatively high inlet fluid temperature 
compared to other experimental conditions in the consolidated database. Siu-ho et al.[16] and 
Konishi et al. [17] also provided poor predictions for the database, with MAEs of 133.89% and 
171.77%, respectively, since both correlations are independent of any geometric terms and their 
geometric parameter ranges are relatively large compared to the ranges in the database. 

Roth et al.[47] and Wan & Joshi [19] showed fair predictions, with MAEs of 75.95% and 
74.36%. Wan & Joshi [19] presented two correlations based on the boundary (Re = 100) speculated 
as a range of transitions from laminar to turbulent. In the range of Re > 100, the MAE value was 
62.12%, whereas the prediction was relatively poor, with the MAE of 97.15% in the range of Re 
<100. Notice that the Kharangate correlation [20] shows the highest accuracy among the previous 
correlations, evidenced by the MAE, θ, and ξ of 68.43%, 27.14%, and 45.55%, respectively, 
although it does not contain any geometric terms; mainly because the experimental data used to 
establish their correlation was distributed in nearly the median of both hydraulic diameter and Re 
of the consolidated database. The present regression model provides the best prediction accuracy, 
with an overall MAE of 52.33%. However, despite the low overall MAE, θ and ξ are low with 
33.01% and 49.42%. The most data points did not come within 30% of prediction because the 
predicted data points are slightly underestimated in the low Re range. 
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Figure 7 Comparison of experimentally determined Fanning friction factor with predictions 
of (a) new regression correlation, (b) Prasher et al.[15], (c) Siu-ho et al.[16], (d) Moores et al. 
[45], (e) Konishi et al.[17], (f) Roth et al.[47], (g) Wan & Joshi [19], and (h) Kharangate et 
al.[20].
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Figure 8 Comparison of individual experimentally-determined friction factor data points 
with predictions of relevant existing and present correlations.

Figure 8 illustrates the predictions of eight selected relevant correlations and presents a 
regression correlation against the individual Fanning friction databases from 22 sources. The 
present regression correlation provides evenly fair predictions, with MAEs < 99.6% for all 22 
individual databases. The correlations of Wan & Joshi [19] and Kharangate et al. [20] have also 
shown fair predictions, with a range of MAEs < 191.0% for the individual databases. The Prasher 
et al. [15] correlation has provided fairly reasonable predictions for most individual databases but 
poor predictions for Siu-Ho et al. [16], Brunschwiler et al. [30], and Liu et al. [31] with MAEs of 
691.9%, 599.0%, and 9112.7%, respectively. These low accuracies are mainly based on the large 
discrepancies in geometric and operational ranges such as high aspect ratio (HDR, H/Df = 5.4–6.7, 
3.4) [16,31], and specific low Re range (Re < 10) [30]. Some correlations show poor predictions 
for Kong et al.’s database [21] with MAEs of 334.9%, 246.7%, 475.3%, and 453.4% for Prasher 
et al. [15], Siu-Ho et al. [16], Moores et al. [45], and Konishi et al. [17], respectively. In 
comparison, others provide MAEs of 23.3–118.1% since they were tested in the limited Reynolds 
number range with R245fa as a working fluid.
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Figure 9 Distribution of MAE in predictions of present regression correlation and 
selected relevant correlations relatives to (a) friction factor, (b) Reynolds number, and (c) 
working fluid.

Figure 9 shows the predictions according to the operational conditions of the present 
regression correlation and the relevant correlations. As shown in Figure 9(a), most correlations 
show high MAEs in the low friction factor range of f = 0–0.1 because some of those low friction 
factors are from high Re (Re < 2400) while most of the previous correlations were developed in a 
low Re range (Re < 1000). Moores et al. [45] has developed for a wide Re range of Re = 200–
10000 but also provided poor prediction in this f range. In the higher f range (f > 3.0), most 
correlations show relatively large MAEs, while better predictions are made in the moderate f 
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Figure 10 Distribution of MAE in predictions of new regression correlation and previous 
correlations for data point relative geometrical conditions: (a) hydraulic diameter of pin fin, 
(b) fin shape, (c) fin configuration, and (d) fin height.

range of f = 0.2–1.0. The larger MAEs in the high f range is because these data points are based on 
a low flow-rate range, which has relatively high uncertainties. Figure 9(b) shows the MAEs 
according to the Reynolds number. Since the data with Reynolds number between 0 and 300 
occupies 68.20% of the total data points, it can be expected that this range of data has a greater 
impact on the results than other ranges of data. Therefore, the present regression correlation 
provides the best predictions in the range of Re < 1200 but relatively high MAEs (> 200%) in the 
higher Re range (Re > 1200), since data points are insufficient. Wan & Joshi [19] has also provided 
good predictions in the low Re range because this was established with experimental data in the 
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relatively narrow range of Reynolds number, Re = 22–357. Roth correlation [47] has shown 
excellent predictions for most f range, but the overall prediction is slightly large due to relatively 
poor predictions in f < 0.2.  Figure 9(c) illustrates the distribution of MAEs in predictions relative 
to working fluid. The consolidated database consisted of 85.4% of data points from water; 
therefore, the present regression correlation exhibits the lowest MAE for water. Most other 
correlations failed to accurately predict the data in R245fa except for the correlations, such as the 
new regression correlation, Wan & Joshi [19], and Kharangate et al. [20]. 

Figure 10 illustrates the MAEs according to geometrical parameters of hydraulic diameter, 
pin fin shape, flow configuration, and fin height. Figure 10(a) shows the MAE of each correlation 
according to the hydraulic diameter (Df) range of the pin fin. Wan & Joshi [19] and Siu-ho et al. 
[16] correlations have been developed at a fixed fin diameter of Df = 0.2 mm, but they provide 
good predictions for Df > 0.2 mm while having slightly higher MAEs in Df < 0.2. The Kharangate 
correlation [20] has also been developed based on Df ~0.047 mm, but it provides evenly good 
predictions for the whole Df range. Prasher et al. [13], which is based on HDR = 1.3–2.8 with Df  
= 0.055–0.153 mm, predicts extremely poorly (MAE = 1472.84%) in Df > 0.5 mm due to large 
deviations in some data points from Liu et al. [31] that have very high aspect ratio (HDR  > 5).

Figure 10(b) shows the comparison of predictions for different pin fin shapes. As can be 
seen from the number of data, most data points (89.46%) are experimental results using circle, 
square, or diamond fin shapes. Therefore, the new correlation has shown a very good prediction 
for these fin shapes, with fair predictions for other shapes. Since the Siu-Ho correlation [16] has 
been developed at a square shape where the vortex is likely to occur, the results with square and 
diamond shapes are superior to shapes such as circle and ellipse. The Konishi correlation [17] 
especially provides the best prediction for the Ellipse case, while it has been developed using 
square shape. Additionally, in the new correlation, Wan & Joshi [19] and Kharangate [20] have 
shown that the differences in MAE are not large and show evenly good predictions for all types of 
fin shape. Figure 10(c) shows the MAE according to the pin fin configuration. Overall, predictions 
are better for staggered configurations than inline, due to the larger number of data points in 
staggered fin configurations. In the case of Roth [47], it was developed through experiments on 
both inline and staggered configurations, but MAE in the inline case is more than four times that 
in the staggered one. The new correlation shows evenly good predictions, evidenced by MAEs of 
45.7% and 55.9% for inline and staggered, respectively. Figure 10(d) shows the MAE according 
to the fin height. The highest MAE, of 9112.69%, was obtained by the Prasher correlation [15] 
due to the aforementioned reason of the data points with an exceptionally high aspect ratio of HDR 
> 5. The new regression correlation and Roth correlation [47] have shown good predictions at 
small fin height, of Hf = 0–0.1 mm, since these are only correlations developed using data points 
with small channel heights of Hf  < 0.1 mm. In the case of the Siu-Ho [16], Moores [45], and 



-- 21 --

Konishi [17] correlations, the MAEs at Hf < 0.1 mm are high since these correlations are based on 
heights of 0.67 mm, 0.2–0.4 mm, and 0.67 mm, respectively.

3.2 Assessment of the new ANN model
Figure 11 shows the prediction of our MLP model for the consolidated database. Figure 

11(a) shows the overall predictive accuracy for all consolidated data points, while Figure 11(b) is 
only for data points in the test set to validate the predictive accuracy for unseen data. As shown in 
this figure, the prediction by our MLP model shows an incredibly improved MAE of 11.88% 
compared to correlations by regression models, which have the lowest MAE of 52.33%. Moreover, 
our MLP model has much better-predicting capabilities for wide geometrical and operational 
ranges, evidenced by θ =90.67% and ξ = 96.55% percentage of data points predicted within ±30% 
and ±50%. The good predicting accuracy is still preserved for unseen data points, as shown in 
Figure 11(b) with MAE of 14.49%, θ=85.54%, and ξ=92.77%.

Figure 11 Comparison of experimentally determined Fanning friction factor with 
predictions of the MLP model for a) all data set and b) for test data sets.

Figure 12 shows the comparison of predictive accuracy by the new regression correlation 
and ANN model according to operating conditions of f, Re, and working fluid. MAEs are 
significantly reduced using our MLP model for all f and Re ranges and types of a working fluid. 
In Figure 12(a), our MLP model shows the largest MAE in f  between 0.4 to 0.5 with an MAE of 
13.54%, but in all ranges, there is an MAE of 8.5–13.7% with a small deviation. The regression 
correlation provides relatively bad predictions for a larger f range of f > 0.7, but the MLP does not 
show a significant difference depending on different f ranges. 
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Figure 12 Distribution of MAE in predictions of new regression correlation and MLP 
model according to operational conditions: (a) friction factor, (b) Reynolds number, and (c) 
working fluid. 

Figure 12(b) shows the distribution of MAE, according to Re. The highest MAE is found 
in the 0-300 range, but MAE is still low at 11.5%. The range of Re > 900 gives lower MAE, of 3–
9%, than those from Re < 900, which is probably caused by the high uncertainty in low Re range 
from low flow rates. Figure 12(c) shows the MAE distribution for working fluid. Our MLP model 
provides evenly good predictions for all working fluids, while the regression model shows large 
MAE differences for types of a working fluid. Our MLP model shows the highest MAE of 12.01% 
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for water, while the regression correlation shows the lowest MAE for water, 48.28%, since 85% 
of the consolidated data (1,410 data points) have water as the working fluid. The biggest cause of 
the high MAE with water in the MLP model is from underpredicted f in square and triangle shapes 
due to the characteristic of the shapes causing a higher pressure drop.

Figure 13 shows the comparison of MAEs for both the new regression model and our 
MLP model according to geometric parameters of Df, fin shape, fin configuration, and Hf. Figure 
13(a) shows the highest MAE, of 21.59%, for Df = 0.2–0.3 mm, while MAE = 5.49–15.39% for 
other hydraulic diameter ranges. The data in Df = 0.2–0.3 mm has high MAE, mainly due to data 
points from Zhao et al.[36] Siu-ho et al. [16], and Guan et al.[38], which have MAEs > 40%. 

Figure 13(b) shows the MAE distribution for different fin shapes. Our MLP model shows 
relatively high MAEs for square and triangle fin shapes. Zhao et al. [36] and Guan et al. [38] 
claimed that square and triangle tend to show lower f at laminar and higher at turbulent than round 
shapes like circle or ellipse due to the eddy effect at turbulent, resulting in the underprediction of 
f for these shapes. Figure 13(c, d) shows the MAE distribution with fin height and flow 
configuration. Our MLP model shows the highest MAE, 17.34%, at Hf = 0.5–0.6 mm, since many 
data points in this height range are square and triangle fin shapes. Similarly, the staggered flow 
configuration has a higher MAE of 12.49% than that for the inline of MAE = 8.65% due to the 
same reason. 

Figure 14 shows the MAE comparison of the new regression correlation and our MLP 
model against the individual Fanning friction databases from 22 sources. Our MLP model provides 
evenly good predictions, evidenced by a range of MAE,2.63–18.52%, except for high MAEs of 
36.22% and 22.79% for Siu-ho et al. [16] and Zhao et al. [36], respectively. The prediction for 
Siu-ho et al. [16] data shows the highest MAE and is even higher than that by the new regression 
model. This result comes from different predicting accuracy with respect to pin fin shape and 
Reynolds number for the new regression and ANN model. Siu-Ho et al. data consist of Re = 0–
700 with square fin shape, where the regression model shows fair prediction accuracies compared 
to others. However, the predictions for square fin shape within Re = 0–900 are especially poor in 
the ANN model compared to those Re > 900, as shown in Fig. 12. Zhao et al. [36] experimented 
with various shapes. Among them, the results of experiments with diamonds and triangle shapes 
showed high MAEs of 36.32% and 31.52%, respectively, while it showed relatively good 
predictions of MAE of 12.69% for ellipse, 18.84% for circle, and 18.51% for square. The detailed 
predictive accuracies are summarized in Table S2 in the supplementary information. 
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Figure 13 Distribution of MAE in predictions of MLP for data point relative geometrical 
conditions: (a) Hydraulic diameter of pin fin, (b) fin shape, (c) fin configuration, and (d) 
height. 
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Figure 14 Comparison of individual experimentally determined friction factor data points 
with MLP.

4. Conclusions

This study is part of two studies conducted to develop artificial-neural-network-based tools 
for predicting the pressure drop and heat transfer coefficient in micro-pin fin heat sinks with 
various geometries for various operational ranges, to overcome the limitations of conventional 
regression models. In this study, we adopted a universal approach to predict the frictional pressure 
drop for flows in micro-pin fin arrays. Universal models were developed on the basis of a 
consolidated database amassed from 22 published studies. The consolidated database comprised 
1,651 frictional pressure drop data points for six different working fluids, eight different fin shapes, 
and Reynolds numbers (Re) in the range 0–2500. Two different universal approaches were 
examined: using i) conventional regression method and ii) multilayer perceptron (MLP) neural 
network. Prediction accuracies of the developed universal models were compared with those of 
previous relevant correlations. We categorized seven relevant correlations into two groups, with 
one group containing correlations without any geometric term and the other containing correlations 
with at least one geometric term. The key results of the study are as follows:

(1) In the first group (containing correlations without any geometric term), Kharangate et 
al.’s [20] correlation showed the best prediction (MAE = 68.43%), while in the other 
group, the new correlation based on the conventional regression method provided the 
most accurate result (MAE = 52.33%). 
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(2) A new MLP, a type of artificial neural network, with 12 hidden layers and 28 nodes for 
each layer was developed, and the prediction accuracies were compared with those of 
relevant correlations for a wide range of geometric and operating parameters namely 
the friction factor, Reynolds number, type of the working fluid, fin hydraulic diameter, 
fin shape, fin height, and flow configuration. Overall, our MLP model showed superior 
prediction accuracy for almost every condition, and its MAE was 11.88% for all data 
and 14.49% for the test data set, indicating almost fivefold enhancements. Furthermore, 
90.67% of the total data was predicted within the 30% error range and 96.55% of the 
total data was within the 50% error range. 

(3) The MAE of MLP predictions was relatively small for some geometries with sharpened 
shapes such as square and triangle, due to missing parameters to quantify the sharpened 
shape, but further improvement can be expected if detailed fin shape can be trained 
during neural network modeling. 

(4) A neural network is a group of interconnected artificial neurons; it processes 
information based on a connectionist approach to computation. Therefore, if it does not 
overfit, it outperforms the existing regression method. Because the proposed method 
determines the friction factor correlation with a neural network method based on 
various literature sources, the approach can be used as a general-purpose prediction 
method for micro-pin fins with different spacing and operating conditions.
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Supplementary Information

Appendix A. Selection of numbers of hidden layers and nodes

Table S1  MAE of different combinations of layers and nodes.
Layer

Node
4 layers 8 layers 12 layers 16 layers

training validation training validation training validation training validation
4 103.83 75.22 143.00 100 39.69 29.26 71.83 57.56
8 42.75 34.58 30.00 19.85 22.44 20.09 149.75 76.04

12 54.32 56.62 25.14 21.48 27.34 19.70 57.36 63.61
16 83.02 85.85 31.70 12.45 30.47 18.09 27.84 27.96
20 42.34 36.71 105.66 15.06 46.25 13.68 159.54 73.31
24 33.37 37.07 75.88 51.85 54.53 12.81 38.84 38.83
28 55.12 65.01 97.67 71.18 12.31 13.01 17.31 18.77
32 52.44 58.88 26.22 30.55 37.05 11.41 32.30 35.39
36 38.78 34.89 45.97 57.53 71.13 12.21 98.15 52.07
40 37.14 40.15 39.22 37.46 17.34 15.44 41.41 38.04

Table S1 shows a combination of four kinds of layers and 10 kinds of nodes. In this study, three 

combination sets of layers and nodes that have lower than 20% of both train MAE and validation 

MAE were chosen: 12layer 28node, 16layer 28node, and 12layer 40node. 12layer 28node were 

chosen because it shows the minimum difference between train MAE and validation MAE. This 

means model is not over- or under-fitted. 12layer 28node also shows the lowest validation MAE 

among the three sets.

Appendix B. Comparison θ and ξ of new regression and ANN mode for each 
individual study

Table S2  θ and ξ of regression and MLP by each paper
Author Total data 

points
Regression θ 

[%]
Regression ξ 

[%] MLP θ [%] MLP ξ [%]

Koşar et al. (2005) 56 32.14 44.64 96.43 98.21

Prasher et al. (2006) 68 22.06 38.24 94.12 98.53

Kosar & Peles (2006) 213 33.33 50.23 79.25 91.51

Siu-Ho et al. (2007) 24 100.00 100.00 66.67 75

Kosar & Peles (2007) 25 68.00 96.00 100.00 100.00

Konishi et al. (2009) 42 0.00 0.00 78.57 92.86

Brunschwiler et al. (2009) 264 37.50 60.98 99.24 99.62
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Liu et al. (2011) 19 47.37 73.68 89.47 94.74

Mita & Qu (2011) 88 43.18 89.77 100.00 100.00

Renfer et al. (2011) 20 30.00 75.00 100.00 100.00

Liu et al. (2013) 70 0.00 5.71 95.71 100.00

Liu et al. (2015) 53 0.00 39.62 100.00 100.00

Zhao et al. (2016) 97 31.96 71.13 79.38 87.63

Hua et al. (2016) 36 36.11 66.67 88.89 97.22

Guan et al. (2016) 150 42.00 68.00 86.67 96.67

Falsetti et al. (2017) 29 0.00 0.00 96.55 100

Kharangate et al. (2018) 22 0.00 100.00 100.00 100.00

Rasouli et al. (2018) 96 0.00 0.00 92.71 100.00

Xu Wu et al. (2018) 163 0.00 0.00 91.41 99.39

Falsetti et al. (2018) 52 0.00 0.00 100.00 100.00

Kong et al. (2019) 30 80.00 100.00 96.67 100.00

Jung et al. (2021) 34 0.00 0.00 100.00 100.00

All 1651 25.92 45.25 91.46 96.97

Table S2 compares the θ and ξ of regression and MLP by individual experimental study. The 

prediction by the new regression model is the worst for Siu-Ho et al. [16] data of MAE = 12.71% 

being θ = 95.8%, ξ = 100%, followed by Renfer et al. [33] with MAE = 14.93%, θ = 90% and ξ = 

95%. Although Kharangate et al. [20] data shows θ = 9.1%, all errors are under 50%. In the case 

of MLP, most papers have a ξ of 90% or more. ξ values of Zhao et al. [36] and Siu-Ho et al. [16] 

is lower than 90%. In the case of Zhao et al. [36], MAE is high when the shape is square, diamond, 

or triangle, while Siu-Ho et al. [16] conducted with a square fin shape. 
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Table 3  Summary of frictional friction factor studies for micro-pin fins included in the 
consolidated database.

Author Shape Config Fluid f Re Df 
[mm]

Hf

[mm] q" [W/cm2] Operating condition Total data 
points

Included data 
points Remark

Koşar et al. 
[12] C, D

ST
IN Water 0.27 - 

8.25 5 – 100 0.05 - 0.1 0.1 – 0.2 Adiabatic ṁ = 0.47 – 3.9 g/min
Tin = 22 oC 56 56 Converting from Darcy f to fanning f

Prasher et al. 
[15] C, S ST Water 0.09 - 

1.14 40 – 1000 0.055 - 
0.15

0.2 –
0.31 Adiabatic

ṁ = 9.98 – 199.6 g/min
ΔP = 0 – 250 kPa

Tin = 50 oC
68 68

Kosar & Peles
[14] C, D ST

IN Water 0.08 - 
12.75 3.1 – 271.8 0.035 - 

0.1 0.243 Adiabatic 213 213 Converting from Darcy f to fanning f

Siu-ho et al.
[16] S ST Water 0.07 - 

0.16 120 – 700 0.2 0.67 50 – 100 Tin = 25 oC
ṁ = 83.4 – 644.2 g/min 24 24

Kosar & Peles
[13] C ST Water 0.18 - 

2.03 14 – 250 0.1 0.1 – 
0.243 Adiabatic ṁ = 0.6 – 9 g/min 59 25 Excluding some uncertain data points

Konishi et al
[17]. S ST Water 0.4 - 0.83 35 – 260 0.2 0.67 Adiabatic Tin = 21 – 80 oC

ṁ = 36.6 – 90.6 g/min 42 42

Brunschwiler 
et al. [30] C, DS ST 

IN Water 0.02 - 
111.57 <1000 0.025 - 

0.1 0.1 – 0.2 Adiabatic ṁ = 50 – 210 g/min
Tin = 25 oC 307 264 Pearl chain shape and SL =Df are 

excluded

Liu et al. [31] D ST Water 0.13 - 
0.59 80 – 700 0.63 - 

0.79 3.0 50 – 350 Q = 5.693 – 57.221 L/h
Tin = 30 – 70 oC 19 19 Converting Darcy to fanning

Mita et al. 
[32] C ST Water 0.12 - 0.4 25 – 800 0.18 0.683 Adiabatic Tin = 23 – 80 oC

ṁ = 34.32 – 318.9 g/min 88 88 Converting Darcy to fanning

Renfer et al. 
[33] C IN Water 0.07 - 

0.58
14.5 – 
270.4 0.1 0.2 Adiabatic 20 20 Calculating f using pressure drop

Liu et al. [34] C ST
IN Water 0.18 - 1.1 8.6 – 396.5 0.5 0.5 Adiabatic 70 70 Converting from W/4L to NL

Liu et al. [35] C, E, D ST Water 0.06 - 
0.85

108.6– 
970.2 0.4 - 0.56 0.5 Adiabatic 53 53 Converting Darcy to fanning

Zhao et al. 
[36]

C, S, 
D, E, T ST Water 0.02 - 

1.39 100 – 2500 0.28 - 
0.72 0.5 Adiabatic 97 97 Converting Darcy to fanning

Hua et al. [37] C ST Water 0.04 - 
1.76 70 – 1700 0.4 0.3 Adiabatic ṁ = 0 – 199.6 g/min

ΔP = 0 ~ 40 kPa 36 36 Only new data included.
 f from pressure drop & Q

Guan et al. 
[38] C, D, T ST Water 0.18 - 

1.21 47 – 922.8 0.28 - 
0.72 0.5

*50 – 150 
W  150 150 Calculating f using pressure drop

*Heated area not specified
Falsetti et al. 

[39] C IN R1234ze (E) 0.09 - 
0.18 230 – 2500 0.05 0.1 20 – 44 Tout = 25, 30, 35 oC 29 29 Converting from W/L to NL

Kharangate et 
al. [20] C ST Water 0.2 -0.5 23 - 135 0.047 0.11 24 – 141.4

ṁ = 15.1 – 64.1 g/min
Pin = 144.4 ~ 340.1 kPa
Pout = 132.0 – 201.0 kPa

Tin = 25 oC, Tout = 31.5 – 84.3oC

22 22

Rasouli et al. 
[40] D ST FC-72 0.69 - 

5.33 15 - 1500 0.18 - 0.2 0.396 – 
0.845 Adiabatic Not

specified 96 Exact number is not specified

Xu_Wu et al. 
[41]

C, S, 
D, E, 

SE, VE

ST
IN Water 0.27 - 

3.96 40 – 1000 0.1 - 0.15 0.11 Adiabatic ṁ = 3 – 42 g/min
Tin  > 30 oC 163 163 Converting from W/L to NL

Falsetti et al. 
[42] C IN

R236fa, 
R134a, 
R245fa

0.1 - 0.31 230 – 2500 0.05 0.1 20 – 44 Tout = 25 oC 52 52 Converting from W/L to NL and Ach 

to Amin

Kong et al. 
[21] C ST R245fa 0.03 - 

0.51 35 – 500 0.045 - 
0.1

0.2 – 
0.208 2.5 – 48.7 Tin = 22.2 – 25.3 oC

ṁ = 14.7 – 181.6 g/min 30 30

Jung et al. 
[43] C ST FC-72 0.08 - 

0.18 81 – 182 0.038 0.091 0 – 60 Q = 70 – 140 g/min 34 34
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Table 4 Previous micro-pin fin friction factor correlations.
Author(s) Equation Fluid Geometry Operating 

Condition

for Re < 100
0.214 0.349 0.870 1.656 2.708

0.6683.704 Ref L f T f W L

f f f f f

H S D S D D Df
D D D D D

 


          

                   
         

 for Re > 100
0.620 0.710 0.501 0.050 0.047

0.2940.270 Ref L f T f W L

f f f f f

H S D S D D Df
D D D D D




          

                   
         

1 Present 
study

 for all Re
0.244 0.164 0.919 1.851 0.367

0.5391.569 Ref L f T f W L

f f f f f

H S D S D D Df
D D D D D




          

                   
         

Water
FC72
R1234ze
R134a
R236fa
R245fa

Staggered & Inlined
Circle, Square, Triangle, Ellipse, 
Diamond, Dropped shape
25μm < Df < 720μm
Hf = 0.09 – 3 mm
ST = 0.05 – 1.1 mm
SL = 0.05 – 1.2 mm

Re = 0 - 2440

   for Re < 100
0.640 0.258 0.283

1.350169.82 Ref L f T f

f f f

H S D S D
f

D D D

 


      

           
     

2 Prasher
et al. [15]   for Re < 100

1.249 0.700 0.360

0.1000.295 Ref L f T f

f f f

H S D S D
f

D D D

 


      

           
     

Water

Staggered, Circle, Square
55 μm < Df < 153 μm
1.3 < Hf /Df < 2.8
2 < ST /Df < 4
2 < SL /Df < 4

Re = 40 - 1000
Tin = 50 oC

3 Siu-ho et 
al. [16]

0.5475.023 R ef  Water

Staggered, Square
Df = 200 μm
Hf = 670 μm
ST = SL = 400 μm

Re = 37.9 -85.8
Tin = 21 oC

4 Moores
et al. [46]

0.289

0.3902.63 Ref

f

H
f

D


 
   

 
Water

Staggered, Circle
0.5 < Hf /Df < 1.1
1.3 < ST /Df < 1.36
1.13 < SL /Df < 1.18

q’’ = 0.016-0.24 
W/mm2

Re = 200-10,000
Tin = 27 oC

5 Konishi
et al. [17]

0.3502.621 R ef  Water

Staggered, Square
Df = 200 μm
1.3 < H/Df < 2.8
2< ST/Df < 4
2< SL/Df < 4

Re = 0 - 300

6 Roth
et al. [47]

0.92312.919 R ef  Water

Staggered & inlined, Circle
Hf = 91.1 & 128.9 μm
ST = 91.1 & 129.3 μm
C/Df = 0.56 to 0.77

Re = 9 – 238.4
Tin = 50 oC

for Re < 100
0.356 0.791 0.745

0.5253.355 Ref L f T f

f f f f L

H S D S D Lf
D D D D N

  


      

           
     

7 Wan & 
Joshi [19] for Re > 100

0.051 0.175 0.249

0.5520.586 Ref L f T f

f f f f L

H S D S D Lf
D D D D N

  


      

           
     

Water

Staggered, Square
Df = 200 μm
Hf /Df = 1.5
ST /Df = 2
SL /Df = 2

Re = 22 - 357
Tin= 25 oC

8 Kharangate
et al. [20]

0 .5202 .5 R ef  Water

Staggered, Circle
Df = 46.5 μm
Hf /Df = 2.37
ST /Df = 2.15
SL /Df = 2.15

q’’= 24.0 -141.4 
W/cm2

Re = 23 - 135
Tin = 25 oC

Supplementary Information

Appendix A. Selection of numbers of hidden layers and nodes

Table S3  MAE of different combinations of layers and nodes.
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Layer

Node
Layer4 Layer8 Layer12 Layer16

train validati
on train validati

on train validati
on train validati

on
4 103.83 75.22 143.00 100 39.69 29.26 71.83 57.56
8 42.75 34.58 30.00 19.85 22.44 20.09 149.75 76.04

12 54.32 56.62 25.14 21.48 27.34 19.70 57.36 63.61
16 83.02 85.85 31.70 12.45 30.47 18.09 27.84 27.96
20 42.34 36.71 105.66 15.06 46.25 13.68 159.54 73.31
24 33.37 37.07 75.88 51.85 54.53 12.81 38.84 38.83
28 55.12 65.01 97.67 71.18 12.31 13.01 17.31 18.77
32 52.44 58.88 26.22 30.55 37.05 11.41 32.30 35.39
36 38.78 34.89 45.97 57.53 71.13 12.21 98.15 52.07
40 37.14 40.15 39.22 37.46 17.34 15.44 41.41 38.04

Appendix B. Comparison θ and ξ of new regression and ANN mode for each 
individual study

Table S4  θ and ξ of regression and MLP by each paper
Author Total data 

points
Regression θ 

[%]
Regression ξ 

[%] MLP θ [%] MLP ξ [%]

Koşar et al. (2005) 56 32.14 44.64 96.43 98.21

Prasher et al. (2006) 68 22.06 38.24 94.12 98.53

Kosar & Peles (2006) 213 33.33 50.23 79.25 91.51

Siu-Ho et al. (2007) 24 100.00 100.00 66.67 75

Kosar & Peles (2007) 25 68.00 96.00 100.00 100.00

Konishi et al. (2009) 42 0.00 0.00 78.57 92.86

Brunschwiler et al. (2009) 264 37.50 60.98 99.24 99.62

Liu et al. (2011) 19 47.37 73.68 89.47 94.74

Mita & Qu (2011) 88 43.18 89.77 100.00 100.00

Renfer et al. (2011) 20 30.00 75.00 100.00 100.00

Liu et al. (2013) 70 0.00 5.71 95.71 100.00

Liu et al. (2015) 53 0.00 39.62 100.00 100.00

Zhao et al. (2016) 97 31.96 71.13 79.38 87.63

Hua et al. (2016) 36 36.11 66.67 88.89 97.22

Guan et al. (2016) 150 42.00 68.00 86.67 96.67

Falsetti et al. (2017) 29 0.00 0.00 96.55 100

Kharangate et al. (2018) 22 0.00 100.00 100.00 100.00

 et al. (2018) 96 0.00 0.00 92.71 100.00
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Xu Wu et al. (2018) 163 0.00 0.00 91.41 99.39

Falsetti et al. (2018) 52 0.00 0.00 100.00 100.00

Kong et al. (2019) 30 80.00 100.00 96.67 100.00

Jung et al. (2021) 34 0.00 0.00 100.00 100.00

All 1651 25.92 45.25 91.46 96.97
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An artificial neural network model for predicting frictional pressure 
drop in micro-pin fin heat sinks

Highlights

 Universal approach for predicting frictional pressure drop in micro-pin fin heat sinks for 
embedded microfluidic cooling is achieved.  

 A consolidated database consisting of 1,651 experimental data points of frictional pressure 
drop in micro-pin fin heat sinks is created from 22 research sources published over the past 
two decades.

 A conventional regression method based on generalized reduced gradient nonlinear 
algorithm provides poor predictive accuracies with MAE over 50% 

 A multilayer perceptron neural network model shows superior performance with an overall 
MAE of 11.9% resulting in a 5-fold enhancement in predicting accuracy. 
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