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While particle aggregates play a central role in recent models for nanofluid thermal conductivity, the
effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied
in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate
experiments, infrared microscopy, Monte Carlo simulations, and rate equations for particle and heat
transport. The predicted thermal conductivity and viscosity enhancements are compared to determine
the favorability of aggregating nanofluids. Experimental data show non-uniform temporal increases in
thermal conductivity and are well described through simulation of the combination of particle aggrega-
tion and diffusion. The simulation shows concentration distributions due to thermal diffusion causing
variations in aggregation, thermal conductivity and viscosity. The aggregation produces an unfavorable
nanofluid. An optimum nanoparticle diameter is calculated to minimize settling, thermal diffusion and
aggregation.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nanofluids of metal and metal oxide nanoparticles suspended
in fluids have generated much interest in applications including
cancer detection and treatment [1], interface lubrication, and elec-
tronics cooling. Much attention has been on cooling applications
due to reports of thermal conductivity enhancements much great-
er than those predicted by effective medium theory (EMT), which
for dilute suspensions of well-dispersed nanoparticles with kp� kf

predicts a 3% increase for every 1%vol concentration. The high ther-
mal conductivities reported could allow for large improvements in
current fluidic system cooling abilities. Past work proposed
hypotheses to explain the thermal conductivity enhancement
including Brownian motion induced micro-convection [2–6], near
field radiation [7], and liquid layering [8–10], which have been
questioned by multiple researchers [11–13].

Effects of aggregation are found in the nanofluid studies by var-
ious research groups, but are often unaccounted for. Past measure-
ments of viscosity showed increases of 10% or higher per 1%vol

concentration [14–19]. This exceeds the predictions of Einstein in
1911 [20,21] for well dispersed nanoparticle suspensions of 2.5%
per 1%vol concentration. Optical thermal conductivity measure-
ments using forced Rayleigh scattering [22] and beam deflection
[23] techniques yielded data consistent with EMT. Researchers that
noted aggregation or opaque fluids with aggregates large enough
to scatter light measured higher thermal conductivities than pre-
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dicted by EMT [24–27]. Aggregation models account for the
increases in thermal conductivity and viscosity. For microchannel
heat exchangers, it is particularly important to understand the cor-
relation between the enhancement in thermal conductivity and
viscosity. A recent benchmark study consisting of 34 research
groups has shown that for a variety of stable, well-dispersed
nanofluids, the thermal conductivity is well modeled through the
Maxwell Effective Medium Theory [28]. Thus, aggregation is an
important factor for thermal applications of any nanofluid.

Several groups have studied the time evolution of the nanofluid
thermal conductivity finding significant initial enhancements in
the thermal conductivity that decrease substantially over time.
The particle sizes for these studies were typically 10 nm or less,
while the aggregate sizes were found to become >1 lm. In the
worst cases, a significant amount of settling was noticed [29–32].
Gharagozloo et al. [33] found with a stabilized nanofluid the ther-
mal conductivity increased over time. Aggregation and settling are
two mechanisms behind the time evolution of the thermal conduc-
tivity. As the aggregates become large (>1 lm) settling occurs
causing a decrease in particle concentration and thermal conduc-
tivity. Potentially large enhancements can occur in stabilized solu-
tions if aggregates are less dense and small enough to stay in
solution.

The effect of aggregation on thermal conductivity has been mod-
eled by a few research groups. Calculations for typical aggregates
give potential enhancements of 5% per 1%vol concentration for dense
aggregates and up to 30% for sparse aggregates [11,34–39]. Ghara-
gozloo and Goodson [40] measured aggregate fractal dimensions
over time for alumina nanofluids and showed increased aggregation
with increasing concentration and temperature in isothermal
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Nomenclature

A area
c particle concentration
d diameter
D diffusion coefficient
DT thermal diffusivity
df fractal dimension
dl chemical dimension
j particle flux
k thermal conductivity
N number of particles
q heat flux
r radius
R radius of gyration
ST Soret coefficient

T time

Greek symbols
a enhancement factor
u volume fraction
l viscosity

Subscripts
agg aggregate
c percolation contributing
eff effective
f fluid
nc non-percolation contributing
p particle

Fig. 1. Schematic of infrared microscope experimental setup showing nanofluid
held between copper plates and glass spacers. A heat flux is applied across the
nanofluid with a thin Kapton heater, measured on the opposite side with a heat flux
sensor, and dissipated into a thermoelectric cooler and heat sink. The temperature
is monitored with thermocouples on the copper plates.
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conditions. Philip et al. [41] measured the linear aggregation of sta-
bilized magnetite particles in a magnetic field and measured an
enhancement of 64%. Diffusion has been shown to strongly influence
the local particle concentration and thus aggregation, thermal
conductivity, and viscosity in flow channels [42–44]. To fully under-
stand the potential of aggregated nanofluids a study of aggregation
in a temperature gradient situation is necessary.

The present work isolates the effects of aggregation and thermal
diffusion on the nanofluid thermal conductivity. Experimental data
obtained using high resolution infrared microscopy are compared
to a Brownian motion base Monte Carlo simulation of nanofluids
subjected to a temperature field utilizing the models for fluid prop-
erties from the previous studies. A numerical simulation of the
thermal diffusion is compared to the Monte Carlo results without
aggregation to verify the results and estimate the Soret coefficient.
Results show the combined effects of aggregation and thermal dif-
fusion on the thermal conductivity distribution. Predicted values of
thermal conductivity and viscosity are compared to determine the
effectiveness of nanofluids over the base fluid.

2. Experimental apparatus

2.1. Full field infrared imaging

A calibrated high-resolution infrared microscope (QFI/Infra-
scope) measures the full-field temperature distribution. Fig. 1
shows a schematic of the experimental setup. The IR focal plane ar-
ray uses an array of InSb elements (256 � 256) with detection
wavelengths of 2–5.5 lm and 0.1 K temperature sensitivity. A
15x SiGe objective with numerical aperture of 1.0 provides spatial
resolution of 2.8 lm. Two 1 in., square, copper plates spaced
500 lm apart by glass spacers hold the nanofluid. The average Ray-
leigh number of the system with water is 160, which is much less
than the limit of 1000 for buoyancy-driven flow to stay weak and
heat transfer to be primarily through conduction. A 250 lm thick
Kapton heater (Omega/KHLV-101) generates joule heat that con-
ducts across the nanofluid and dissipates into a temperature con-
trolling thermoelectric cooler and water cooled heat sink. The
heat flux sensor (Omega/HFS-3) monitors any variations from the
applied power. An humidification chamber reduces evaporation.

A 20 lm thick polyester film covers the fluidic opening, serves
as a uniform emissivity emitter, precisely defines the emission
location, and reduces fluidic evaporation. The heat traveling
through the film is calculated using a thermal resistor network
as less than 0.06% of the applied heat. A COMSOL finite element
thermal model predicts the difference in the calculated thermal
conductivity from the temperature of the film compared to the
fluid temperature to be less than 3%. To obtain the thermal conduc-
tivity, 256 temperature distribution lines are averaged and the
gradient calculated.

The emissivity is calibrated for each measurement by a two
temperature surface emissivity correction at temperatures charac-
teristic of the measurement. The calibration is applied to the mea-
surement images and corrects for reflected signal components and
emissivity spatial and temperature dependencies. Heat loss from
the experimental apparatus to the environment is due to natural
convection from the outer surfaces, conduction through the back
insulator, and minor fluid evaporation. These losses are found to
be less than 5% of the applied heating power and are systematically
eliminated as part of the data extraction procedure. The ability to
precisely determine the temperature-dependent conductivity of
pure water is verified before each measurement. The thermal
conductivities are found to have repeatability to within 5% of the
average value.

2.2. Nanofluid preparation

The nanofluid studied in the present work is the same as that
studied by Gharagozloo and Goodson [40]. The nanofluid has 20%
weight concentration alumina in H2O with less than 1% nitric acid
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(Alfa Aesar/12733). The fluid is diluted with deionized water to the
desired volume concentrations. Prior to the measurements the
nanofluid is sonicated (Fisher Scientific/FS30) continuously for
4 h at 60 Hz and 130 W. The nanofluid is stable with only minor
settling after a week at room temperature. The pH of each of the
nanofluids is measured using pH test strips (Indigo Instruments/
3381) with a pH range of 1–14. The pH values are read with an
accuracy of ±0.5. The measured pH for each of the nanofluid con-
centrations is 5.5 and for the deionized water is 6. DLS measure-
ments performed on a solution diluted to 0.05%vol concentration
yield a nominal particle diameter of 40.2 nm, a relative variance
of 0.02, and skew in the decay of 11.5 nm towards larger diameters.
A small number of sintered particles, less than 0.5%, are initially
present with a nominal diameter of 125 nm. These sintered aggre-
gates are large enough to scatter visible light and reduce the trans-
parency of the nanofluid.
3. Monte Carlo simulation methodology

Methods of modeling particle aggregation vary depending on
the desired output. The Monte Carlo method allows for direct sim-
ulation of the system. Two main types of Monte Carlo simulation of
aggregation are typically used. The first allows for the simulation of
the growth and structure of the aggregates [45,46]. The second al-
lows for extraction of bulk effects due to the aggregation. Spielman
and Levenspiel [47] showed the effectiveness of a Monte Carlo sim-
ulation for a system of reacting, coalescing droplets by randomly
choosing two droplets to coalesce, mix and redistribute at a con-
stant rate. Shah et al. [48] expanded the simulation procedure by
modeling the random behavior in terms of probability functions
and advancing time based on the expected time for the event to oc-
cur. Liffman [49] calculated the probability of one cluster/particles
interacting with another. Based on the probability a single particle
was randomly chosen to interact and another particle was ran-
domly chosen to interact with it. From the simulation, they mod-
eled the size distribution of the clusters over time. Kruis et al.
[50] proposed a simpler version by summing the collision func-
tions for each possible particle pairs and choosing pairs to aggre-
gate based on a comparison between a random number and the
relative magnitude of a pairs collision function. After each itera-
tion, the time is progressed based on the number of aggregating
pairs. For both of these last simulations no regard is given to the
position of the particles in the system.
3.1. Particle initialization and aggregation

In this study, the method of Kruis et al. [50] is expanded on to
determine the aggregate size variation across the temperature gra-
dient and calculate the variation of the properties [51]. Rather than
allow aggregation between any particles in the simulated system,
only pairs near each other are considered as potential aggregates.
Instead of choosing a time step based on the number of aggregat-
ing pairs, the number of aggregating pairs is chosen from the time
step. The simulation determines the time evolution of the concen-
tration distribution and aggregate sizes. The particles are initially
uniformly distributed within the modeled area. At each time step,
a normally distributed random displacement is applied to each
particle in the x and y directions with mean zero and variance
2DDt. The simulation accounts for the temperature dependence
of the viscosity and diffusion coefficient and applies specular
reflection at the boundaries.

Aggregation is a process in which initially dispersed particles
join together [52]. The aggregate size increases with time as more
particles join. In colloids, particles are dispersed in fluid and diffuse
under Brownian motion. The particles act independently until they
come close enough to experience Van der Waals forces and stick
together. Particles may ricochet off each other multiple times
due to the electrostatic barrier before actually joining into an
aggregate. To model these effects efficiently, the aggregation is
modeled through a three step process. The expected number of
aggregating collisions in a given time step is calculated from the in-
verse of the sum of the collision frequency function, b, for all par-
ticle pairs. For Brownian limited aggregation the collision
frequency function derived from Fick’s law is given by [50,53,54]:

bij ¼ 4pðDi þ DjÞ � ðri þ rjÞ ð1Þ

Pairs of particles separated by less than their average diameter
are identified as potentially aggregating collisions. Potentially
aggregating collisions are chosen randomly to aggregate up to
the expected number of aggregating collisions. The time step is suf-
ficiently small to ensure more potentially aggregating collisions are
identified than the number of expected aggregating collisions.

The simulation keeps track of the number of particles in, the
average diameter of the particles in, the predicted radius of gyra-
tion of, and the hydraulic diameter of the aggregates. The radius
of gyration is calculated by equating the particle volume fraction
within the aggregate from two formulas, the first based on volume
fraction (Eq. (2)), the second from 3D fractal theory of aggregates
(Eq. (3)):

Aagg ¼
NAp

up;agg
¼ pR2

a ¼
Npd2

p

22up;agg

! up;agg ¼
Nd2

p

4R2
a

ð2Þ

up;agg ¼
2Ra

dp

� �df�3

ð3Þ

where up,agg is the particle volume fraction in the aggregate, N is the
number of particles in the aggregate, dp is the average particle size
in the aggregate, Ra is the radius of gyration of the aggregate, and df

is the fractal dimension of the aggregate. We assume the aggregates
are sparse enough, given their low fractal dimension, for the two
dimensional area concentrations to equal the three dimensional
volume concentrations. The fractal dimension is a measure of the
change in particle density with distance from the center of the
aggregate and typically varies between 1.7 and 2.5 for 3D. It relates
the particle volume fraction in the aggregate to the aggregate
radius of gyration through the power law given in Eq. (3). Using
areas in the formulation is necessary due to the 2D model, which re-
sults in a potential error of a factor of 4/3 when equating Eqs. (2)
and (3).

3.2. Effective thermal conductivity

The thermal conductivity of the aggregates is calculated by sep-
arating them into two components, the percolation contributing
backbone and non-percolation contributing dead-ends [39]. The
effective thermal conductivity of the dead-end particles, knc, is cal-
culated using the Bruggeman model, which is appropriate for high
particle volume fractions [55]:

X
i

uiðki � kncÞ
ki þ 2knc

¼ 0 ð4Þ

where ui is the volume fraction of the non-percolation contributing
aggregate components (fluid and dead-end particles) and ki is the
thermal conductivity of the components. The effective thermal con-
ductivity of the aggregate, kagg, is calculated using composite theory
for completely misoriented ellipsoidal particles, for the backbone, in
a matrix of the non-percolation contributing portion. The following
equations are used [56]:
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kagg ¼ knc
3þucð2bc

11ð1� L11Þ þ bc
33ð1� L33ÞÞ

3�ucð2bc
11L11 þ bc

33L33Þ
ð5Þ

L11 ¼
0:5p2=ðp2 � 1Þ � 0:5pcosh�1p=ðp2 � 1Þ1:5 p > 0
1=3 p ¼ 0

(
ð6Þ

L33 ¼ 1� 2L11 ð7Þ
bc

ii ¼ ðk
c
ii � kncÞ=ðknc þ Liiðkc

ii � kncÞÞ i ¼ 1;3 ð8Þ

kc
ii ¼

kp

ð1þ cLiikp=kf Þ
; with c ¼ 2þ 1

p

� �
a; a ¼ 2Rbkf

dp

� �
ð9Þ

where Rb is the boundary resistance between the particle and the
fluid and p is the ratio between the length of the percolating chain
to the particle size. The effective thermal conductivity of the nano-
fluid is found through the Maxwell effective medium theory [57] for
dispersed particles and is given by:

keff ¼ kf
kagg þ ðn� 1Þkf � ðn� 1Þuaggðkf � kaggÞ

kagg þ ðn� 1Þkf þuaggðkf � kaggÞ
ð10Þ

where uagg is the volume fraction of aggregates in the fluid and
n = 3/w where w is the sphericity of the aggregate. A spherical
aggregate is assumed yielding n = 3.

The volume fraction of the particles in the aggregate is given by
Eq. (3) and up,agg = u/uagg and the volume fraction of the backbone
particles in the aggregate is uc ¼ ð2Ra=dpÞdl�3, where dl is the
chemical dimension of the aggregates. The chemical dimension is
a measure of the branch dimensions within the aggregate and the-
oretically varies between 1 and df though a maximum value of 1.6
is imposed by the self-avoiding random walk [58]. It relates the
concentration of backbone particles within the aggregate to the
radius of gyration of the aggregate through a power law. The
volume fraction of dead-end particles in the aggregate is unc =
up,agg � uc. A limit is imposed on the size of the aggregates based
on the fractal theory by setting uagg = 1 yielding a maximum radius
of gyration of Ra;max ¼ ðdp=2Þu1=ðdf�3Þ.

To estimate the effect of aggregation and thermal diffusion on
the viscosity and the viscosity profile, the bulk effective viscosity
of the nanofluid is calculated. The effective hydrodynamic viscosity
for a fluid containing fractal aggregates is modeled by [58]:

leff ¼ lf 1�
uagg

umax

� ��2:5umax

ð11Þ

where umax = 0.61 is the maximum possible volume concentration
in the aggregate for rigid spheres. This equation is most appropriate
for higher shear rates, where most nanofluids have been found to
have less shear thinning [14].

The Monte Carlo simulation allows for the modeling of aggrega-
tion and thermal diffusion based on local concentrations and tem-
peratures. For this simulation, aggregation is assumed to be
diffusion limited, aggregates are assumed to be spherical, and the
fractal dimension is assumed to be less than 2. No surface effects
are accounted for in the simulation. The thermal conductivities of
the aggregates are calculated using composite theory assuming no
interfacial resistance between the particles due to ballistic
transport.

4. Diffusion simulations

A numerical simulation models the thermal diffusion for non-
interacting particles in the experimental setup. The concentration
and temperature profile over time is modeled through a numerical
simulation of the appropriate Onsager relation [59] for the particle
and heat flux given below:

j ¼ �Drc � DT crT ð12Þ
q ¼ �c1rT � c2rc ð13Þ
where j is the particle flux, D is the diffusion coefficient, T is the
temperature, c is the particle number concentration, DT = STD is
the thermal diffusivity, q is the heat flux, and c1 and c2 are unknown
coefficients. The Soret coefficient, ST, is used as a fitting parameter
to compare the numerical model to the Monte Carlo simulation
without aggregation. Previous work showed c2rc, which represents
the Dufour effect [59], is multiple orders of magnitude smaller than
c1rT and is negligible [31]. Thus, c1 is the thermal conductivity keff.
The coupled differential equations for the particle and heat flux are
discritized with the control volume technique.

The diffusion coefficient is modeled using Stoke’s drag for a
spherical particle and is given by:

D ¼ kbT
3plf ðTÞdp

ð14Þ

where kb is the Boltzmann constant, lf is the temperature depen-
dent base fluid viscosity, and dp is the particle diameter.

The temperature is calculated at each time step using the effec-
tive thermal conductivity of each element and the second Onsager
equation, which reduces to Fourier’s law dT/dx = �q/keff. The effec-
tive thermal conductivity is calculated using Maxell’s effective
medium theory taking into account the variation in concentration
across the temperature field due to the thermal diffusion.

To solve for the time evolution of the concentration distribu-
tion, the divergence of the first Onsager equation is taken yielding:

@c
@t
¼ r � ðDrcÞ þ r � ðDST crTÞ ð15Þ

The change in the concentration for each element at a particular
time step is calculated from the fluid properties and the local con-
centration and temperature gradients.

To summarize, the flux and resulting concentration gradient of
non-interacting particles in a temperature gradient is modeled
through the appropriate Onsager relation. We assume the Dufour
effect is negligible, which results in no additional heat flux due
to the concentration gradient.

5. Results and discussion

For the Monte Carlo simulation the particle sizes are distributed
based on the DLS measurements of the nanofluid with nominal
particle sizes of 40, 60, 80, and 130 nm. Concentrations of 1%, 3%,
and 5%vol are used. The temperature of the cold boundary is held
at 20 �C and a heat flux of 4 W/cm2 is applied at the opposite
boundary as in the experiments for both simulations. For the
Monte Carlo simulation, df is taken as 1.8, which is the measured
average measured fractal dimension for these aggregate forma-
tions using static light scattering [40] and dl is taken as 1.0, 1.4,
and 1.6 where the value of 1.4 corresponds to the typical value
found for suspensions [57].

5.1. Comparison of Monte Carlo without aggregation and numerical
model

The steady state solution from the Monte Carlo model without
aggregation and the numerical model are fitted using ST as the fit-
ting parameter. From this comparison, the effective Soret coeffi-
cient in the fluid is estimated to be 0.025 K�1, which compares to
estimated maximum values of 0.01 and 0.1 K�1 for C60–C70 fuller-
enes and 4 nm gold particles, respectively [44,60]. The concentra-
tion profile from the Monte Carlo simulation and the numerical
model with this Soret coefficient are plotted in Fig. 2 at multiple
times showing good agreement in both the magnitude and shape
of the curves. From Maxwell’s effective medium theory, the varia-
tion in concentration would result in the expected enhancement to



Fig. 2. Predictions of normalized particle distribution across the channel for Monte
Carlo simulation without aggregation or particle interaction (dashed) and numer-
ical model (solid) for a ST of 0.025 K�1 and d of 40 nm at times of 10, 40 and 180 min
for alumina nanoparticles in water subjected to a heat flux of 4 W/cm2.
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increase 4% at the cold boundary and decrease 4% at the hot
boundary.
5.2. Monte Carlo results for particle concentration effect

The distribution of the average radius of gyration of the aggre-
gates across the nanofluid for the three concentrations is shown for
various times in Fig. 3. The aggregates in the higher concentrations
and cold regions grow faster. It is expected [40] that the aggregates
will grow faster in high temperatures; however, due to the in-
creased concentration at the lower temperatures this is not ob-
served. The predicted distribution of the increase in nanofluid
thermal conductivity from the Monte Carlo simulation for each
concentration at various times is shown in Fig. 4. The time evolu-
tion of the thermal conductivity for the 1%vol concentration is very
small. When taken to 130 simulated minutes, the simulation be-
gins to show a rise in the thermal conductivity in the cold region.
For the 3% and 5%vol concentrations, the increases in thermal con-
ductivity begin to occur early and become large after an hour of
simulated time. The cold region experiences much larger increases
in the thermal conductivity than the hot region in both concentra-
tions due to the diffusion of particles to the cold region combined
with the increase in aggregation due to the higher concentrations.
These results correspond with the higher concentrations and larger
Fig. 3. Predictions of average aggregate radius of gyration distribution across the nanoflu
concentrations of nominal diameter alumina nanoparticles in water subjected to a heat
aggregate sizes present in the cold region compared to the hot
region.

The inclusion of a typical boundary resistance between alumina
and water of 0.77 � 10�8 K m2/W lowers the average effective
thermal conductivity by less than 5%. A comparison for the average
effective thermal conductivity with and without a boundary resis-
tance is plotted in Fig. 5. The chemical dimension is varied between
1 and 1.6 and the resulting thermal conductivity is plotted in Fig. 6.
There is little variation at early time with less aggregation. A vari-
ation of 5% between 1 and 1.6 cases occurs after two hours of sim-
ulated time.

5.3. Monte Carlo results for the effective viscosity

The ratio of the calculated viscosity enhancement factor,
avisc � (leff/lf � 1)/u and thermal conductivity enhancement fac-
tor, acond � (keff/kf � 1)/u for the three volume concentrations is
plotted in Fig. 7. Through thermal and hydraulic analysis for lami-
nar flow in a circular tube, Prasher et al. [14] showed that this ratio
should be less than 4 for nanofluids to be more favorable than the
base fluid for microchannel heat exchangers. This is considered a
best case scenario heat exchanger design, where as a worst case
scenario would require the thermal conductivity enhancement to
be greater or equal to the viscosity enhancement. For lower
amounts of aggregation, the ratio stays favorable. At longer times
and higher concentrations the nanofluid becomes unfavorable.

The predicted viscosity distribution from the Monte Carlo sim-
ulation for the 3%vol concentration is shown in Fig. 8. The viscosity
in the cold region doubles after an hour, while the viscosity in the
hot region shows little change. For this set up, the expected in-
crease in the viscosity from the hot region to the cold region is a
factor of 1.7. In laminar flow it has been shown [57] that the fractal
dimension of the aggregates is reduced from 1.8 to 2.3 due to the
shear forces, which reduces the effective viscosity. The shear ef-
fects of the flow will also cause greater concentration and viscosity
distributions as particles are forced towards the center of the chan-
nel cross-section away from the channel walls. In turbulent flows,
aggregates may be broken up and the favorability criteria may dif-
fer from the current analysis.

5.4. Experimental results for thermal conductivity

The thermal conductivity is calculated using Fourier’s Law for
heat diffusion, q00 = �krT, where rT is the slope of the ensemble
averaged temperature distribution and q00 is the estimated actual
heat flux. The total temperature difference across the cavity is
id at various times from the Monte Carlo simulation for (a) 1%, (b) 3%, and (c) 5%vol

flux of 4 W/cm2.



Fig. 4. Predictions of thermal conductivity distribution across the nanofluid at various times from the Monte Carlo simulation for (a) 5%, (b) 3% and (c) 1%vol concentrations of
40 nm nominal diameter alumina nanoparticles in water subjected to a heat flux of 4 W/cm2.

Fig. 5. Plot of the predicted average thermal conductivity over time from the Monte
Carlo simulation with no boundary resistance (dashed) and with typical boundary
resistance of 0.77 m2K/W between alumina and water (dash-dot).

Fig. 6. Plot of the predicted average thermal conductivities over time from the
Monte Carlo simulation for the 1%, 3% and 5%vol concentrations for dl = 1 (dot/�), 1.4
(dash) and 1.6 (dash-dot/�).

Fig. 7. Predictions of ratio of the average viscosity and thermal conductivity
enhancement over time from the Monte Carlo simulation for 1%, 3%, 5%vol

concentrations and 40 nm particle diameter.

Fig. 8. Predictions of viscosity distribution of the base fluid and nanofluid across the
channel at various times from the Monte Carlo simulation for 3%vol concentrations
of 40 nm nominal diameter alumina nanoparticles in water subjected to a heat flux
of 4 W/cm2.

802 P.E. Gharagozloo, K.E. Goodson / International Journal of Heat and Mass Transfer 54 (2011) 797–806



Fig. 9. Experimentally measured thermal conductivity distribution data across the nanofluid at various times for (a) 5%, (b) 3% and (c) 1%vol concentrations of 40 nm nominal
diameter alumina nanoparticles in water subjected to a heat flux of 4 W/cm2.
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25 �C with 25 W of heating and a mean temperature of 50 �C. Emit-
ter film curvature at the edge of the copper plates prevents the
evaluation of the outer 70 lm of the image. The thermal conductiv-
ity profile is evaluated by calculating the slope of nine 40 lm tem-
perature divisions with 50% overlap. Fig. 9 shows the measured
distribution of the nanofluid thermal conductivity increase for each
concentration at various times. Small droplets condensing on the
emitting film during the measurement create slight waviness in
the plots which slightly skew the calculations. The 1%vol concentra-
tion yields no discernable changes in conductivity over time consid-
ering the experimental uncertainty. The 5%vol concentration yields a
spatially uniform increase in thermal conductivity over time. The
3%vol concentration yields an increase in thermal conductivity over
time with a larger increase in the cold region of the fluid.
5.5. Comparison of Monte Carlo and experimental results for thermal
conductivity

The average thermal conductivity from the Monte Carlo simula-
tion and the experimental measurement for each concentration is
shown in Fig. 10. For each volume concentration, the initial exper-
imental thermal conductivity value starts at close to the effective
medium theory. The simulation and the experiment show good
agreement in both magnitude and curvature. Both show the
Fig. 10. Plots of the average thermal conductivity of the nanofluid over time
predicted from the Monte Carlo simulation (dashed/solid) and experimentally
measured data (dotted/hollow) for 1%, 3%, and 5%vol concentrations of 40 nm
nominal diameter alumina nanoparticles in water.
thermal conductivity increase flattening over time as the aggrega-
tion progresses. The experimental data appears to be shifted in
time to the left. This is likely due to the nanofluid sitting for about
15 min after sonication while the IR system is calibrated to the new
surface emissivity, which would allow aggregation to occur before
the measurement begins.

In both the simulation and experimental measurement the vari-
ations in the distribution of the nanofluid thermal conductivity
increase for the 1%vol concentration are small. For the 3%vol concen-
tration both the simulation and experiment show larger increases in
the cold region than in the hot region. The simulation predicts more
of a variation across the nanofluid than measured. For the 5%vol con-
centration the experiment shows a constant increase across the
whole nanofluid while the simulation shows larger increases in
the cold region. These differences between the simulation and
experiment for the 3% and 5%vol concentrations are likely due to
the time period between sonication and the measurement during
the system calibration. The aggregate growth during this time peri-
od slows the diffusion reducing the concentration distribution.

5.6. Monte Carlo results for initial particle size effect

Fig. 11 plots the average radius of gyration of the aggregates
over time predicted by the Monte Carlo simulation for 5%vol con-
centration and initial particle diameters of 40 nm, 60 nm, 80 nm,
and 130 nm. As the initial particle size increases the amount of
aggregation decreases due to the reduced motion and fewer parti-
cles at the same volume concentration. Fig. 12 plots the ratio of the
predicted viscosity and thermal conductivity enhancement factors
calculated from the Monte Carlo simulation for 5%vol concentration
and the four initial particle diameters. Due to the reduced aggrega-
tion with the larger initial particles, the nanofluid stays favorable
for the 60 nm, 80 nm, and 130 nm initial particles sizes for the sim-
ulated time period.

5.7. Particle size optimization

Variations of aggregation, diffusion and settling with initial par-
ticle size lead to the possibility of an optimum value. To estimate
an optimum initial particle size, the dependence of the aggrega-
tion, diffusion and settling time constants are calculated and com-
pared. The aggregation time constant represents the time for the
total number of particles and aggregates to reduce by fifty percent
and is given through slow aggregation theory [61,62] by:

tp ¼
plf rpW
kbTup



Fig. 12. Ratio of the predicted average viscosity and thermal conductivity
enhancement factor over time from the Monte Carlo simulation for 5%vol concen-
tration and 40 nm, 60 nm, 80 nm, and 130 nm nominal diameter.

Fig. 13. Time constant for aggregation (dot), settling (dash), and diffusion (dash-
dot) plotted versus particle radius. For each line the arrow points in the direction of
increasing time constant and stability. The optimum particle size is found to be
130 nm.

Fig. 11. Plot of the predicted average radius of gyration of the aggregates over time
from the Monte Carlo simulation for 5%vol concentration for particle diameters of
40 nm, 60 nm, 80 nm, and 130 nm.
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where W is the stability ratio [63] given by:

W ¼ 2rp

Z 1

0

BðhÞ
ðhþ 2rpÞ2

exp
VT

kbT

� �
dh

where B(h) is given by [64]:

BðhÞ ¼ 6ðh=rpÞ2 þ 13ðh=rpÞ þ 2

6ðh=rpÞ2 þ 4ðh=rpÞ

h is the distance between the surfaces of the particles and
VT = VA + VR is the total potential energy of interaction. VA is the en-
ergy of attraction due to Van der Waals forces and is given by [65]:

VA ¼ �
A
6

2
s2 � 4

þ 2
s2 þ ln

s2 � 4
s2

� �

where s = 2 + h/rp. VR is the electrostatic energy of repulsion due to
the electric double layer, which for small values of s = jrp can be
approximated by [66]:

VR ¼
ere0f

2rp

s
expð�jhÞ
where j2 = 2e2NAI/(kbTere0) is the Debye parameter [66], e is the ele-
mentary charge, NA is Avogadro’s number, er is the relative dielectric
constant of the liquid, e0 is the dielectric constant of free space, f is
the zeta-potential of the particles, I is the concentration of ions in
the water which is estimated by the pH [35] as 10�pH for pH 6 7
and 10�(14-pH) for pH > 7. To model the fluid of this study a temper-
ature of 40 �C and pH of 4 is used.

The time constants for settling and thermal diffusion are calcu-
lated by equating the average distance moved by a particle under-
going Brownian motion and distance moved from the respective
drift velocity:ffiffiffiffiffiffiffiffiffiffiffi

2Dsd

p
¼ udsd

sd ¼
2D
u2

d

The drift velocity for settling is given by creeping flow over a
sphere through a force balance between gravity, buoyancy, and
drag given by [61]:

6plf
dp

2
ud ¼ ðqp � qf ÞVpg

ud ¼
d2

pðqp � qf Þg
18l

where q is the density of the particle (p) or fluid (f), Vp is the particle
volume, ud is the drift velocity, and g is the acceleration of gravity.

The drift velocity for a particle undergoing thermal diffusion is
estimated as ratio of the diffusion coefficient and the length scale,
D/l, with l taken as 500 lm. The results are plotted in Fig. 13. Con-
sidering slower diffusion, settling and aggregation to be optimal,
an optimum particle diameter for our system is determined by
the region of intersection to be about 130 nm. This is consistent
with the simulation results for diffusion and aggregation for the
130 nm particles.
6. Concluding remarks

Through experimentation and Monte Carlo simulation of aggre-
gation and thermal diffusion, verified by a numerical model of
thermal diffusion, we show that the combination of aggregation
and thermal diffusion can lead to large variations in thermal con-
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ductivity. The aggregation of stabilized nanofluids significantly in-
creases the thermal conductivity of the fluid. Thermodiffusion af-
fects the amount of aggregation across a temperature gradient by
creating concentration gradients causing variations in the rate of
aggregation and size of aggregates within the nanofluid. Although
the effects of the stabilizers are not accounted for in the simulation,
it predicts the thermal conductivity of the nanofluid well through
well known composite theory [55]. The expected increase in aggre-
gation with temperature [40] is surpassed by the resulting concen-
tration variation. Variations in the average temperature will affect
the overall progression of aggregation and variations in the tem-
perature gradient will affect the concentration gradient.

Large viscosity distributions are predicted to form due to the
aggregate size distribution. As aggregation progresses the pre-
dicted viscosity increases faster than the predicted thermal con-
ductivity causing much larger viscosity enhancement factors and
unfavorable nanofluids. Increasing the particle size greatly reduces
both the aggregation and thermal diffusion allowing the nanofluid
to stay in the favorable regime at the higher concentrations. An
optimum particle size can be determined for individual systems.
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