Thermal Conductivity of Doped Polysilicon

McConnell, A.D., Srinivasan, U., Asheghi, M., and Goodson, K.E., 2001, "Thermal Conductivity of Doped Polysilicon," IEEE/ASME Journal of MicroElectroMechanical Systems, Vol. 10, pp. 360-369.

Download PDF

The thermal conductivities of doped polysilicon layers depend on grain size and on the concentration and type of dopant atoms. Previous studies showed that layer processing conditions strongly influence the thermal conductivity, but the effects of grain size and dopant concentration were not investigated in detail. The current study provides thermal conductivity measurements for low-pressure chemical-vapor deposition (LPCVD) polysilicon layers of thickness near 1 micron doped with boron and phosphorus at concentrations between 2.0x10^18 cm-3 and 4.1x10^19 cm-3 for temperatures from 20 K to 320 K. The data show strongly reduced thermal conductivity values at all temperatures compared to similarly doped single-crystal silicon layers, which indicates that grain boundary scattering dominates the thermal resistance. A thermal conductivity model based on the Boltzmann transport equation reveals that phonon transmission through the grains is high, which accounts for the large phonon mean free paths at low temperatures. Algebraic expressions relating thermal conductivity to grain size and dopant concentration are provided for room temperature. The present results are important for the design of MEMS devices in which heat transfer in polysilicon is important.

Related Projects

The basic physics of phonon conduction in dielectrics and semiconductors has been the focus of research for more than a century. However, recent improvements in nanofabrication technologies have...