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PHONON CONDUCTION IN PERIODICALLY POROUS
SILICON NANOBRIDGES

Amy M. Marconnet, Takashi Kodama, Mehdi Asheghi,
and Kenneth E. Goodson
Department of Mechanical Engineering, Stanford University, Stanford, California

Thermal conduction in periodically porous nanostructures is strongly influenced by phonon
boundary scattering, although the precise magnitude of this effect remains open to inves-
tigation. This work attempts to clarify the impact of phonon-boundary scattering at room
temperature using electrothermal measurements and modeling. Silicon nanobeams, pre-
pared using electron beam lithography, were coated with a thin palladium overlayer, which
serves as both a heater and thermometer for the measurement. The thermal conductivity
along the length of the silicon nanobeams was measured using a steady-state Joule heating
technique. The thermal conductivities of the porous nanobeams were reduced to as low as
3% of the value for bulk silicon. A Callaway-Holland model for the thermal conductivity was
adapted to investigate the relative impact of boundary scattering, pore scattering, and phonon
bandgap effects. Both the experimental data and the modeling showed a reduction in thermal
conductivity with increasing pore diameter, although the experimentally measured value was
up to an order of magnitude lower than that predicted by the model.

KEY WORDS: thermal conductivity, porous silicon, phononic crystals

INTRODUCTION

Nanostructured materials offer the possibility of thermal conductivity extremes.
At one extreme, the thermal conductivities of carbon nanotubes and graphene can exceed
those of metals [1]. On the other, the introduction of nanoscale boundaries such as those of
nanowires [2] and grains [3] can significantly reduce the thermal conductivity. Reducing
the thermal conductivity without significantly impacting the electrical conductivity and
Seebeck coefficient improves the thermoelectric figure of merit. In thin silicon films, the
thermal conductivity can be reduced through the introduction of nanoscale or microscale
periodic pore structures, sometimes referred to as phononic crystals [4–6]. This name
makes an analogy with photonic crystal cavities, such as those in silicon [7] and other mate-
rial systems [8], for which careful design of pore structures leads to a photonic bandgap
associated with wavelengths comparable to the periodic length scales of the cavity. The
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200 A.M. MARCONNET ET AL.

NOMENCLATURE

A fitting constant for the impurity
scattering term, A = 1.32 × 10−45

s3

A matrix used in electrothermal
model

Ac cross-sectional area
AR aspect ratio, AR = W/H
B fitting constant for the Umklapp

scattering term, B = 1.4 × 10−19

S/K
B vector used in electrothermal

model
C fitting constant for the Umklapp

scattering term, C = 152 K
Cj heat capacity per phonon mode
D pore diameter
E fitting constant for the bulk scatter-

ing term, E = 2.3 × 10−3 m
F thermal conductivity reduction

function
f ph frequency of phonons impacted by

a phononic crystal cavity
H thickness
h Planck’s constant
I current
k thermal conductivity
kb Boltzmann constant
L beam length
Le length of the nonporous region of

the nanoladders
Nh number of holes in the nanoladder
Np number of phonon paths
n index in summation
O phonon point of origin____
OP distance phonon travels between

origin and nanobeam boundary____
OR distance phonon travels between

origin and pore boundary
P limiting dimension
p specularity parameter
q phonon wave vector
qgen heat generation rate
qin rate of heat transfer into the control

volume
qout rate of heat transfer out of the con-

trol volume
R electrical resistance
S pore spacing (pitch)

T temperature
To reference temperature
U nanowire/nanobeam cross-sectional

area
V voltage
v phonon velocity
vavg average speed of sound
W beam width
x distance along length of nanolad-

der
�x length of the differential element in

the x-direction

Greek Symbols
α temperature coefficient of resistiv-

ity
� phonon transmission function

γ γ2I2R0α
/
[WL (kmHm + ksHs)]

δ reduced thickness, δ = H/E
θ polar angle
� h/2π

� phonon mean free path
ρ electrical resistivity
σ electrical conductivity
τ phonon relaxation time
ϕ azimuthal angle
ω phonon angular frequency

Subscripts
0 selected mean free path
B bulk
boundary due to boundary scattering
bulk due to scattering mechanisms in

bulk silicon
e of the nonporous beam ends
i discretization index in numerical

model
impurity due to scattering on impurities
j phonon branch index
m of the metal layer
o at the reference temperature
p of the porous region of the beam
pores due to scattering on the pores
r reduced
s of the silicon layer
Umklapp due to Umklapp scattering pro-

cesses
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PHONON CONDUCTION 201

demonstration of a phononic crystal influencing heat conduction is extremely challenging
due to the very small dominant phonon wavelengths (<5 nm at room temperature [9]), as
well as the significant variation in the wavelengths of thermal phonons about the dominant
value. Several groups are studying phononic crystals and are investigating modifications to
the phonon dispersion relationship through the introduction of periodic pore structures [10–
14]. These pores introduce a high density of interfaces that impede phonon conduction due
to higher scattering rates. It is important to isolate these classical ballistic scattering effects,
which are themselves challenging to precisely quantify, from any interpretation considering
a modification of the phonon band structure.

Though the thermal conductivity of two-dimensional periodically porous materials
has been studied across a range of dimensions [6, 15], thermal transport in nanobridges with
single-row pores (henceforth called nanoladders), which have been used as photonic crystal
cavities [16], merits more attention. These structures present an interesting opportunity to
examine the impact of pore geometry and boundary scattering on thermal transport. In this
article, we discuss thermal transport in silicon nanoladders both from an experimental and
analytical viewpoint. We use a steady-state four-probe electrothermal measurement tech-
nique to measure the thermal conductivity and a Callaway-Holland-type model to further
investigate effects of pore and boundary scattering.

ELECTROTHERMAL MEASUREMENT

The thermal conductivity of the nanoladders is characterized using a four-probe,
steady-state electrothermal measurement technique, similar to that of Liu and Asheghi [17,
18]. A metal film deposited on the silicon nanostructure serves as a heater and thermometer
for the measurement of thermal properties. The fabrication process starts from a silicon-
on-insulator wafer and requires only one lithography step to form both the nanoladder and
the four electrical contact pads. The silicon device layer is thinned to ∼200 nm using oxi-
dation and wet etching prior to electron beam lithography. The nanoladder and probe pads
are patterned using electron beam lithography and the silicon is dry etched. Next, the SiO2

layer beneath the silicon nanoladder device is removed using a 6:1 solution of buffered
oxide etchant for ∼15 min to completely suspend the nanoladder device. Because the oxide
etchant is isotropic, in addition to the nanoladder itself, the paths to the current and voltage
probe pads are suspended. Finally, a 40-nm film of palladium is deposited on the suspended
device using electron beam evaporation (Innotec ES26C; Innotec Group, Simi Valley, CA).
A scanning electron micrograph (SEM) of the device design is shown in Figure 1a, and the
suspended region is indicated by the dashed lines. A schematic of the device cross section is
shown in Figure 1b. The palladium thickness Hm is calculated from the deposition rate and
time. The pore diameter D, pitch S, beam width W, beam length L, and silicon thickness H
are measured from SEMs.

Electrical current is passed through the palladium film and the temperature T
increases due to Joule heating, while the electrical conductivity σ decreases proportional
to the temperature. To illustrate the effect of Joule heating, Figure 1c shows the results of
a numerical model of the temperature rise and associated electrical conductivity reduction
for the nonporous nanobeam at the maximum applied current. In order to minimize heat
loss to ambient, the experiments were carried out in a vacuum (≤20 mTorr). COMSOL
(Burlington, MA) models of the nanobeam measurement structure showed that the
radiation losses were negligible for all applied current levels. The current was increased in
steps and the electrical resistance R of the nanoladder was measured through the measured
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202 A.M. MARCONNET ET AL.

Figure 1 (a) SEM of a nanoladder measurement device. The nanoladder is connected to four electrical probe
pads (two for applying current [marked I] and two for measuring voltage [marked V]). The dashed rectangle
approximately marks the extent of the suspended region. (b) Cross section of a nanoladder measurement device.
The nanoladder is fabricated using electron beam lithography from a silicon-on-insulator wafer with 200-nm
device layer and a 1-μm-thick oxide layer. Forty nanometers of palladium is deposited on the devices and serves
as both a heater and a thermometer in the system. (c) Calculated temperature profile along the nanobeam and
corresponding electrical conductivity for the beam without holes at 300 mA applied current. For each current level,
a numerical electrothermal model is used to calculate the temperature profile along the nanoladder and extract the
increase in electrical resistance. (d) Comparison of measured and predicted increase in electrical resistance as
a function of the square of the applied current for a silicon nanobeam without holes. The measured increase in
resistance depends strongly on the thermal conductivity of the silicon layer as indicated by the best fit line with
kS = 112 W m−1 K−1 (solid black line) compared to kS = 100 W m−1 K−1 (dashed blue line) and kS = 125 W
m−1 K−1 (dashed red line) (color figure available online).

voltage V across the nanoladder. Figure 1d shows an example plot of the change in
resistance as a function of the square of current.

The temperature coefficient of resistance α and the electrical resistivity ρo of the
palladium film were determined for each nanoladder by measuring the resistance at low
current; that is, in the linear region of the I-V curves. The low current electrical resistance
data at temperatures between 300 and 320 K were fit to R (T) = Ro (1 + α (T − To)), where
Ro is the electrical resistance at the reference temperature To. The temperature coefficient
of resistance was α = 0.0017 K−1. The electrical resistivity of the palladium layer on the
nanoladders at 300 K was calculated from the electrical resistance and geometry. For the
nonporous nanobeam and the nanoladders with 110- and 210-nm-diameter pores, the elec-
trical resistivity of the 40-nm-thick palladium was ρo = 28 μ�·m and for the nanoladder
with 280-nm-diameter pores, ρo = 40 μ�·m. Using the Wiedemann-Franz law, the thermal
conductivity of the palladium layer was estimated to be 26 and 18 W m−1 K−1 for the
small- and large-diameter pore cases, respectively. The estimated thermal conductivity and
electrical parameters were close to the value measured independently for solid palladium
nanobeams of the same thickness and similar beam widths [19].
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PHONON CONDUCTION 203

A combined electrical and thermal model was used to fit the data and extract the
silicon nanoladder thermal conductivity. Heat transfer was assumed to be one-dimensional
along the length of the nanoladder (x-direction), and thermal conduction in both the silicon
and palladium films was included. In the case of a uniform cross-section beam with constant
thermal conductivity, the temperature profile along the beam can be computed analytically
from [18]:

T(x) = To − 1

α

(
1 − cos γx

cos(γL/2)

)
, (1)

where γ2 = I2Roα
/
[WL (kmHm + ksH)], and km and ks are the thermal conductivities of the

palladium and silicon layers, respectively. Using Eq. (1), the average electrical resistance
of the beam as a function of applied current can be determined [18]:

R = Ro

[
2

γL
tan

(
γL

2

)]
. (2)

Given the palladium thermal conductivity, the thermal conductivity of the silicon nanobeam
can be extracted by fitting the data with this equation. However, this model is only valid for
beams with uniform cross sections (i.e., beams without holes).

For the nanoladders, we developed a numerical model to calculate the temperature
profile and electrical resistance allowing for spatially varying cross-sectional area, differ-
ent silicon thermal conductivies for the porous (∼10 μm at center of beam) and nonporous
(∼5 μm at each end of the beam) regions, and temperature-dependent palladium electri-
cal resistivity. This model allows direct extraction of the solid silicon thermal conductivity,
as opposed to an effective conductivity of the porous solid that would be obtained if the
varying cross section were neglected. Using the finite difference method, the temperature
profile along the nanoladder and the increase in electrical resistance at each measured cur-
rent level were calculated. The silicon nanoladder thermal conductivity was extracted by
fitting the model to the resistance versus current data using a nonlinear least-squares fitting
routine. Because the ends of the beams had no holes, the ends were assumed to have the
thermal conductivity extracted for the beam without holes. Thus, only the silicon thermal
conductivity in the center portion of the beam was varied in the fitting routine. Additional
details of the model can be found in Appendix A.

The thermal conductivity of one nonporous nanobeam and three nanoladders (570 nm
wide, 18.8 μm long) with different pore diameters (110, 210, or 280 nm) was measured.
Each nanoladder had 24 pores, spaced by 385 nm. The silicon nanobeam layer was 196 nm
thick and the palladium film was 40 nm thick. All measured thermal conductivities were
reduced from the thermal conductivity of bulk silicon. Specifically, the extracted thermal
conductivities of the nanoladders were 54, 3.7, and 3.4 W m−1 K−1 for the nanoladders
with 110-, 210-, and 280-nm-diameter pores, respectively (see Figure 2). For comparison,
the thermal conductivity data from Kim et al. [20] (in-plane) and Hopkins et al. [5] (out-of-
plane) for two-dimensional phononic crystal films with pore spacings ranging from 500 to
800 nm are included in Figure 2. Note that the out-of-plane thermal conductivities shown
in Figure 2 from Hopkins et al. [5] were modified by the solid fill fraction, not the Eucken
factor.
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204 A.M. MARCONNET ET AL.

Figure 2 Silicon nanoladder thermal conductivity. For the 200-nm-thick nanoladders, the pores are spaced by
385. For the nanoladders with 110-nm-diameter pores, the uncertainty in the thermal conductivity of the nonporous
regions of the beam dominates the uncertainty in thermal conductivity of the porous region. For the larger diameter
pore cases, the uncertainty is largely due to uncertainty in the measured value of the pore diameter. For comparison,
the thermal conductivity data for two-dimensional phononic crystals with pore spacings ranging from 500 to
800 nm fabricated from 500-nm-thick Si films from Kim et al. [20] (circles, in-plane conductivity) and Hopkins
et al. [5] (diamonds, out-of-plane conductivity) (color figure available online).

Surface roughness plays an important role in the scattering of phonons in silicon
nanostructures. Using molecular and lattice dynamics, He et al. [21] showed that the
disorder at the surface of ∼2- to 10-nm-diameter pores in a periodically porous silicon
film reduces the thermal conductivity compared to smooth pores. Hochbaum et al. [22]
experimentally found that the thermal conductivity of rough silicon nanowires was sig-
nificantly lower than that of smooth nanowires. As evident from SEMs (not shown), the
surface roughness of these nanoladder devices was quite large and could contribute to the
extremely low thermal conductivity. Additionally, past studies [23] have shown that reactive
ion etching can cause defective regions near the etched surfaces. These defective regions,
in addition to the surface roughness, may contribute to the low experimentally observed
thermal conductivity.

Uncertainty in the thermal conductivity of the nonporous region contributes to uncer-
tainty in the thermal conductivity of the porous region. It has the largest effect for the
smallest diameter pore case, where the thermal conductivity is closest to that of the non-
porous nanobeam. If the thermal conductivity of the nonporous region is reduced by 10%,
the thermal conductivity extracted for the porous region in the 100-nm-diameter case
increases from 54 to 92 W m−1 K−1. In contrast, for the largest diameter holes (280 nm),
a 10% reduction in the thermal conductivity of the nonporous region only increases the
extracted thermal conductivity from 3.4 to 3.7 W m−1 K−1. For the nanoladders with
larger holes (210 and 280 nm diameters), the temperature rise in the nanoladder is dom-
inated by the temperature rise in the porous region of the beam. However, for the smaller
diameter case (110 nm), the temperature rise in the nonporous region of the beam is pre-
dicted to be approximately half of the total temperature rise and, thus, 10% changes in
the thermal conductivity of the nonporous region lead to significant changes in the fit-
ted thermal conductivity of the porous region of the beam. A fixed upper limit on the
extracted value of the thermal conductivity of the nanoladders can be found by assum-
ing that the porous and nonporous regions have the same thermal conductivity. In this case,
the extracted average nanoladder thermal conductivities are ∼100, 30, and 25 W m−1 K−1

for the nanoladders with 110-, 210-, and 280-nm diameter pores, respectively. In future
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PHONON CONDUCTION 205

work, the nonporous end region of the nanoladder should be eliminated for the geometry to
reduce the uncertainty in the nanoladder measurements.

The geometry of the nanoladders was measured from SEMs and the surface rough-
ness of the edges of the nanoladder and pore boundaries was evident. Edge effects in the
SEM image led to some uncertainty as to the exact location of the edge of the silicon.
Additionally, some of the pores were not quite perfectly circular and there was a slight vari-
ation between pore diameters within each nanoladder. The uncertainty in the pore diameter
(±10 nm) dominated the uncertainty in thermal conductivity for the samples with 210- and
280-nm pores.

Because the extracted values of thermal conductivity for the large-pore-diameter
nanoladders were quite low, fitting the data with a one-dimensional heat transfer model
may actually underestimate the thermal conductivity. To estimate the impact of the one-
dimensional heat transfer assumption, the magnitude of the extracted thermal conductivity
was confirmed with two additional models. The first assumed that “rungs” of the nanolad-
der do not contribute to heat transfer and that the sides of the nanoladder act as two
parallel nanobeams of width (W − D)

/
2. In this case, the extracted thermal conductivi-

ties of the 210- and 280-nm pore diameter nanoladders roughly doubled to 6.4 and 7.3 W
m−1 K−1, respectively. In the second, a fully three-dimensional COMSOL finite element
model was used to fit the data for the 280-nm pore diameter nanoladder. The COMSOL
model considered the same geometry, boundary conditions, and material properties as
explained in Appendix A for the one-dimensional numerical model. The electrical and
thermal solvers were coupled through Joule heating and temperature-dependent electrical
conductivity in the palladium layer, and only thermal transport was considered in the silicon
nanobeam. Using this three-dimensional model, the thermal conductivity was estimated to
be 4.9 W m−1 K−1, a 45% increase in the value from the one-dimensional heat transfer
assumption.

As previously mentioned, the crossbars between the probe pads and the nanoladder
were also suspended due to the isotropic etching of the SiO2. However, they were designed
with a larger cross section than the nanobeam itself to ensure minimal thermal resistance
between the end of the nanoladder and the substrate. From a simple thermal resistance
point of view, the thermal resistance of the crossbars was small in comparison to the total
thermal resistance of the structure, so the temperature rise at the ends of the nanobeam was
expected to be small. However, there was some heat generation in the current path portion
of the crossbar, so a COMSOL model including the crossbars was developed to confirm the
impact of this geometry. For the 280-nm pore diameter nanoladders, the extracted value of
thermal conductivity did not change when the crossbeams were included in the simulation
and the temperature rise at the ends of the nanobeam never exceeded 1% of the maximum
temperature rise in the nanoladder.

MODELING THE THERMAL CONDUCTIVITY OF SILICON NANOLADDERS

Thermal conductivity integral models have often been used to predict the thermal
conductivity of silicon, including bulk silicon [24, 25], nanoscale thin films [17], and
periodically porous silicon films [11]. These models consider the impact of the phonon dis-
persion relations, as well as mode- and wave vector–dependent phonon relaxation times,
in order to compute the thermal conductivity. Specifically, the thermal conductivity can be
computed from a Callaway-Holland-type model [26]:
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206 A.M. MARCONNET ET AL.

k = 1

6π2

∑
j

∫
q

Cj (q, T) vj (q)2 τj (q, T)q2dq

= 1

6π2

∑
j

∫
q

�
2ωj (q)2

kBT2

exp

(
�ωj (q)

kBT

)
(

exp

(
�ωj (q)

kBT

)
− 1

)2 vj (q)2 τj (q, T) q2dq,

(3)

where kB is the Boltzmann constant, h = 2π� is Planck’s constant, and Cj (q, T), ωj(q),
vj(q), and τj (q, T) are the specific heat, angular frequency, velocity, and relaxation time,
respectively, of the phonons in branch j with wave vector q at temperature T . We first
consider the dispersion relation and scattering times for bulk silicon and then include
the impact of nanobeam boundary and pore boundary scattering. Finally, we estimate the
impact modifying the phonon dispersion relation with a phonon bandgap.

Model for Bulk Silicon

The three acoustic branches (one longitudinal and two transverse) were considered
in calculating the thermal conductivity of silicon. Though it is possible to generate the
dispersion relations for silicon through both simulations [26, 27] and experiments [28],
simplifying the dispersion relationship to an analytical form allows for rapid calculations
of thermal conductivity. Debye models are often used in calculations but approximate the
phonon velocity as constant [17]. Born-von Karman (sine-type) models more accurately
represent the band structure, and the required parameters from the model can be esti-
mated from the speed of sound and atomic density of solids [29]. In this article, we use
a fourth-order polynomial fit to the longitudinal and transverse dispersion relationships in
the [1,0,0] direction calculated by Weber [27] using lattice dynamics as used previously by
Hopkins et al. [5].

The relaxation time of phonons in bulk silicon, τj,bulk (q), is calculated with
Matthiessen’s rule considering Umklapp, impurity, and boundary scattering:

1

τj,bulk (q)
= 1

τj,Umklapp
+ 1

τj,impurity
+ 1

τj,boundary
, (4)

where τ−1
j,Umklapp = BTωj (q)2 exp

(−C/
T

)
, τ−1

j,impurity = Aωj (q)4, and τ−1
j,boundary = vj (q)

/
E,

where A, B, C, and E are fitting parameters determined by fitting to data [5, 30]. In this arti-
cle, the values A = 1.32 × 10−45 s−3, B = 1.4 × 10−19 s/K, C = 152 K, and E = 2.3 × 10−3

m were taken from Hopkins et al. [5, 30]. At low temperatures, if the boundary scattering
term is neglected, the thermal conductivity continues to increase with decreasing temper-
ature. Above 100 K, the predicted curves of bulk silicon conductivity are independent of
the choice of the fitting parameter E. Figure 3 shows the thermal conductivity calculated by
this model for bulk silicon.

Nanobeam Boundary Scattering

For nanostructured silicon, boundary scattering is important, even at room tempera-
ture, and modifications to the thermal conductivity integral are required. One method is to
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PHONON CONDUCTION 207

Figure 3 Calculated silicon thermal conductivity. (a) Comparison of bulk (blue line) and nanobeam (red lines)
thermal conductivity. The estimated thermal conductivity for a rectangular nanobeam with a 550 nm × 200 nm
cross section calculated using the Sondheimer-Chambers [32, 33] approach is shown with the dashed red line and
from the random phonon path calculation with the solid red line. (b) Comparison of bulk (blue line) and nanoladder
(cyan lines) thermal conductivity. For 550 nm × 200 nm nanoladders with 200-nm pores spaced by 400 nm, the
dashed cyan line shows the estimation from τpores = P/vj(q), and the solid cyan line shows the estimation from the
random phonon path calculation. In both cases, the reduction due to the outer nanobeam boundaries is calculated
with the random phonon path calculation method (color figure available online).

include boundary scattering in the relaxation time using Matthiessen’s rule. For cylindrical
nanowires, the reduced mean free path considering the nanoscale geometry can be approxi-
mated because the nanowire diameter and the mean free path is related to the scattering rate
by �j = vj (q) τj. Similar geometric estimates of the reduced mean free path can be made
for noncylindrical nanobeams and thin films [31].

A second method for modeling the impact of boundary scattering takes into account
the spectral dependence of boundary scattering and allows determination of the reduced
relaxation time in more complex geometries. The bulk relaxation time is reduced by a
conductivity reduction function F through
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τj,r = Fτj,bulk. (5)

Expressions for the conductivity reduction function for thin wires and films have previ-
ously been derived using kinetic theory by Sondheimer [32] and Chambers [33]. Although
originally derived considering electron transport, this approach is also applicable to phonon
transport. Given a nanobeam with an arbitrary cross section U, a phonon originating at point
O on that cross section, traveling in the polar direction (θ, φ), will scatter on the boundary
at some point P after traveling a distance OP. The conductivity reduction function for a
given mean free path � can be calculated by integrating across the entire cross section and
all polar directions [32, 33]:

F (U, �) = 1 − 3

4πU

∫
U

2π∫
0

π∫
0

sin φ cos2 φ exp

(
−

____
OP

/
�

)
dφdθdU. (6)

For a rectangular cross section, a single set of reduction functions valid for a range of
cross sections can be found by nondimensionalizing the nanobeam dimensions (the reduced
thickness δ = H/� and the aspect ratio AR = W/H). Equation (6) is valid for purely diffuse
scattering at the nanobeam boundary, but modifications are possible to account for specular
reflections:

F (U, �, p) = (1 − p)2
∞∑

n=1

npn−1F
(

U, �
/
n

)
, (7)

where p is the fraction of phonons reflected specularly from the boundaries [32, 33]. The
reduction function computed from Eqs. (6) and (7) for a rectangular nanobeam with an
AR = 2.75 is shown in Figure 4a for purely diffuse scattering (p = 0), as well as par-
tially specular (p = 0.3 and p = 0.9). The thermal conductivity calculated with the purely
diffusive reduction function for this nanobeam geometry is shown in Figure 3a.

One drawback of the Sondheimer-Chambers [32, 33] method for calculating the
reduction function is the time required to complete the numerical integration with sufficient
accuracy, especially for noncircular nanobeams. Specifically, because many subdivisions
of the cross section and phonon propagation direction are required for accurate numeri-
cal integration, it takes several hours to generate the reduction function for a single aspect
ratio. We developed a rapid method of calculating the reduction in thermal conductivity by
considering the propagation of a large number of phonons starting from a random selec-
tion of points in the cross section and with a randomized propagation direction. Similar
to the boundary integral approach, we computed the distance that phonons travel before
scattering at a boundary. Instead of integrating across all possible start locations and propa-
gation directions, we computed the average distance traveled by a large number of phonons
with randomized start locations and propagation directions. This technique is similar to
the method of McGaughey [34] and McGaughey and Jain [35] but fully incorporates the
calculated boundary scattering reduction function with the thermal conductivity integral to
estimate the reduction in thermal conductivity. More details on this method can be found in
Appendix B.
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PHONON CONDUCTION 209

Figure 4 Conductivity reduction function. (a) Thermal conductivity reduction function for a rectangular
nanobeam with AR = W/H of 2.75 (no holes) following the technique of Sondheimer [32] and Chambers [33]
using numerical integration (dashed lines) compared to that using the random phonon path calculation (solid line).
For the Sondheimer-Chambers approach, three specularities are considered: p = 0 (fully diffuse), p = 0.3, and p
= 0.9 (mostly specular). (b) Thermal conductivity reduction for nanoladders (blue dashed line) with AR = 2.75,
W/D = 2.75, and S/D = 2 using the random phonon path calculation compared to that of a nanobeam without
holes (AR = 2.75) (solid red line) (color figure available online).

The conductivity reduction function computed for a nanobeam with an aspect ratio
of 2.75 is shown in Figure 4a. Considering 8,000 phonon paths for each step in 2,500 dis-
cretizations of δ, this calculation takes approximately one second to complete, which is
significantly faster than the boundary integral method. In comparison to the Sondheimer-
Chambers [32, 33] integral approach, the reduction function from the randomized path
approach has a sharper roll-off with decreasing δ. The random path tracing method is purely
geometrical, with a sharp selection between the intrinsic mean free path and the boundary
scattering distance for each phonon path considered. In contrast, the Sondheimer-Chambers
integral includes additional terms stemming from kinetic theory. After computing the
reduction function for a range of reduced thicknesses, the thermal conductivity integral was
computed and Figure 3a shows the thermal conductivity calculated using this expression.

Using the random path tracing method, the impact of boundary scattering is directly
evident in the fraction of phonons scattering due to bulk processes compared to those scat-
tering at boundaries. For a nanobeam with an aspect ratio of 2.75, Figure 5a compares
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210 A.M. MARCONNET ET AL.

Figure 5 (a) Fraction of phonons scattered by boundaries (green) compared to intrinsic scattering mechanisms
(red) for a nanobeam with AR = 2.75. (b) Fraction of phonons scattered by pores (blue) and external nanobeam
boundaries (green) compared to intrinsic scattering mechanisms (red) for a nanoladder with AR = 2.75, W/D =
2.75, and S/D =2 (color figure available online).

the effect of bulk scattering processes to boundary scattering for a range of reduced thick-
nesses. As expected, when the reduced thickness was on the order of unity, the boundary
scattering and intrinsic scattering processes contributed approximately equally. Note that
when δ= 1 (�= H), more than half the phonons scattered on boundaries before traveling
their full mean path (H) and the reduction function was larger than 0.5 due to the continuum
of distances traveled before scattering at the wall.

Pore Boundary Scattering

Beyond scattering at external nanobeam boundaries, in these nanoladder devices,
the scattering at the pore boundaries played an important role in the thermal conductivity.
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PHONON CONDUCTION 211

As with the nanobeam boundaries this scattering can be included either using Matthiessen’s
rule or through a conductivity reduction function. For microporous and nanoporous solids,
Hopkins and colleagues [30] considered a boundary scattering term

τpores = P

vj (q)
, (8)

where P is the limiting dimension in the nanostructure, which for the two-dimensional
periodically porous structures is the distance between pore boundaries (P = S − D). For the
case of the nanoladders, the limiting dimension was the smaller of the distance between
the pores and the distance between the pore edge and the side wall of the nanobeam:
P = min

(
S − D, W−D

2

)
. However, in this work, we separately account for the nanobeam

boundary scattering using the conductivity reduction function described in the previous
section. Thus, to determine the impact of pore scattering alone when using Eq. (8), the lim-
iting dimension considered is P = S − D. Figure 3b shows the reduced thermal conductivity
using this approach for a nanoladder with cross section of 550 × 200 nm2, D = 200 nm, and
S = 400 nm.

The random mean free path approach lends itself particularly well for calculating the
reduction in the mean free path due to pore scattering. A similar algorithm to that used for
the nanobeam boundary scattering calculation above was used to compute the reduction
function for pore scattering in the nanoladders. More details on this method can be found
in Appendix B. As illustrated by the conductivity reduction functions in Figure 4b, the
presence of these pores reduces the phonon scattering time only slightly more than the
nonporous nanobeams of the same cross section.

Many phonons never encounter a pore, instead scattering at external nanobeam
boundaries or due to bulk processes. The relative impact of scattering processes is evi-
dent in Figure 5b from the fraction of phonons scattering due to bulk processes compared
to those scattering at nanobeam boundaries and at hole boundaries. At most only ∼15%
of the phonons scatter on the pore boundaries for this geometry (AR = 2.75, W/D = 2.75,
and S/D = 2). Thus, the thermal conductivity predicted with this method is larger than pre-
dicted by using Eq. (8), as illustrated in Figure 3b. The scattering term τpores = P

/
vj (q)

limits the mean free path of every phonon, whereas the random path calculation consid-
ers that some phonons do not encounter pores. However, phonons near the pores may still
be impacted by the pore boundary, so the two methods could be considered bounds to the
thermal conductivity reduction due to pore scattering. Figure 6 shows the predicted thermal
conductivity using each method for a range of hole diameters and spacings for nanoladders
with a cross section of 550 nm × 200 nm.

Estimate of Impact of Modified Phonon Dispersion Relationships

Several studies have shown modifications to the phonon band structure, specifically
the opening of phononic bandgaps, in phononic crystals consisting of a two-dimensional
array of air holes in a thin film [36, 37]. Recent experimental and theoretical work has sug-
gested that these coherent phonon effects reduce the thermal conductivity [5, 11, 15, 26,
38]. For ∼20-nm-thick silicon membranes with 11- and 16-nm-diameter air holes spaced
by 34 nm, Yu et al. [15] measured a significant reduction in the thermal conductivity, which
they attributed to coherent phonon effects. For a 500-nm-thick silicon membranes with peri-
odic arrays of air holes with diameters on the order of several hundred nanometers, Hopkins
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212 A.M. MARCONNET ET AL.

Figure 6 Impact of hole (a) diameter and (b) spacing on the thermal conductivity of 550 nm × 200 nm silicon
nanoladders. In panel (a) the pore spacing is fixed at 400 nm and the experimental results from this work are
shown with black squares. In panel (b) the pore diameter is fixed at 200 nm. Calculations using the random pore
scattering model are shown in blue, and those using the model τpores = P/vj(q) are shown in red (color figure
available online).

et al. [5] found that to match their model of thermal conductivity to the measured values,
the phonon density of states had to be altered (in addition to including scattering effects).
The nanoladder design studied in this article is essentially a one-dimensional analog to the
two-dimensional phononic crystal slabs.

The frequency of phonons impacted by a periodic pore structure is approximately
[11]

fph = πvavg
/
S, (9)

where vavg is the average speed of sound in silicon. To estimate the thermal conductiv-
ity, a phonon transmission function � (ω (q)) can be included in the thermal conductivity
integral:

k = 1

6π2

∑
j

∫
q

� (ω (q)) Cj (q, T) vj (q)2 τj (q, T)q2dq. (10)
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PHONON CONDUCTION 213

Depending on the exact geometry and material properties, a select band of phonon frequen-
cies will be blocked by the structure [38, 39]. However, to estimate the maximum possible
impact of the porous structures, this work considers the extreme case that the phononic
structure blocks all phonons up to f ph such that the transmission function is

� (ω (q)) =
{

0 ω (q) ≤ 2πfph

1 ω (q) > 2πfph
. (11)

For 550 nm × 200 nm nanoladders with 200-nm-diameter holes spaced by 400 nm,
f ph = 51.4 GHz, and the reduction in thermal conductivity due to any coherent phonon
effects is small. For this geometry, including the effect of coherent phonons leads to only
very small additional reduction in thermal conductivity compared to neglecting phononic
effects (see Figure 7a). The impact of coherent effects is stronger at very low temperatures
(below 50 K) but is still less than 0.02% of the nanoladder thermal conductivity. As shown
in Figure 7b, coherent phonon effects become more important if the nanoladder structure is

Figure 7 Ratio of the nanoladder thermal conductivity considering coherent phonon effects to that neglecting
coherent phonon effects: (a) 550 nm × 200 nm, D = 200 nm, S = 400 nm; (b) 55 nm × 20 nm, D = 20 nm, S =
40 nm. Calculations using the random pore scattering model are shown with solid lines, and those using the model
τpores = P/vj(q) are shown with dashed lines (color figure available online).
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214 A.M. MARCONNET ET AL.

fabricated an order of magnitude smaller in each dimension (55 nm × 20 nm, D = 20 nm,
S = 40 nm), such that the impacted frequencies shift up to 514 GHz.

CONCLUDING REMARKS

The thermal conductivities of three porous nanoladders were measured using
a steady-state electrothermal technique. The thermal conductivities were significantly
reduced from bulk silicon and from the nonporous nanobeam, especially for the large-
diameter pores. A Callaway-Holland model was used to compute reduction in thermal
conductivity. The boundary scattering reduction function was computed both from a
Sondheimer-Chambers [32, 33] approach and by tracing the paths of a large number of
phonons within the nanostructure. The impact of scattering at the pore boundaries was
also estimated using a random path tracing method and from the minimum pore boundary
separation distance. Coherent phonon effects were considered by estimating the phonon fre-
quencies impacted by the periodic pore structure. For these nanoladders with pores spaced
by ∼400 nm, the impact of coherent effects on the thermal conductivity was negligible
(<0.02% at T < 50 K). However, if the dimensions were reduced even by a factor of
10, coherent phonon effects were evident, especially at low temperatures (<100 K). The
results of the thermal conductivity model agreed with the predicted thermal conductivity
for the nanoladder with the smallest diameter pores; however, additional measurements
and modeling work are needed to understand the reduction in thermal conductivity for the
larger diameter pore structures. Surface roughness and nonuniformities in the pore geom-
etry may contribute to the significantly reduced thermal conductivity for the nanoladders
with large-diameter pores.
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APPENDIX A: DETAILS OF THE NUMERICAL ELECTROTHERMAL MODEL

Consider a steady-state energy balance around a differential element of the nanolad-
der of length �x: qgen + qin − qout = 0. The rate of heat generation in the palladium film

is qgen (x, T) = I2ρ(T)

Ac,m(x) , where ρ (T) = ρo (1 + α (T − To)) and Ac,m (x) = HmW (x) is the
cross-sectional area of the metal film. The rates of heat transfer into (qin) and out of (qout)
the differential element are due to thermal conduction in both the silicon and metal layers.
Assuming a spatially uniform palladium thermal conductivity but spatially varying silicon
conductivity, the energy balance becomes

I2ρ (T)

Ac,m (x)
+ km

∂

∂x

(
Ac,m (x)

dT

dx

)
+ ∂

∂x

(
Ac,s (x) ks (x)

dT

dx

)
= 0, (A1)

where Ac,s is the cross-sectional area of the silicon beam. Further expansion of the
differential terms leads to the differential equation:

I2ρ0α

HmW (x)
T +

(
(Hmkm + Hks (x))

dW (x)

dx
+ HW (x)

dks (x)

dx

)
dT

dx

+ (Hmkm + Hks (x)) W (x)
d2T

dx2
= −I2 (ρ0 − ρ0αT0)

HmW (x)
,

(A2)

Figure A1 shows a schematic of the geometry considered in this model, highlighting key
parameters. For the nanoladders in this work, the thermal conductivity of the silicon at
the nonporous beam ends ke was taken from the measured thermal conductivity of the
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Figure A1 Schematic showing the geometry and key parameters for the numerical model of the temperature
distribution in the nanobeams and nanoladders. (a) In the top view of the porous nanobeam, three regions of the
beam are indicated, including two nonporous regions at the end of the beam of length Le where ks(x) = ke and the
porous region in the center of the beam with ks(x) = kp. Four example discretized elements are shown with dashed
boxes and correspond to the discretized elements shown in panel (b). The two leftmost boxes correspond to case 1
(no hole) with the discretized element spanning the full width of the nanobeam. The two rightmost elements each
contain a portion of a pore, corresponding to case 2, and consist of two subelements with widths less than the full
beam width (color figure available online).

nonporous nanobeam, and the thermal conductivity of the porous region kp was assumed
uniform:

ks(x) =
{ ke, where x < Le

kp, where Le ≤ x ≤ L − Le

ke, where x > L − Le

(A3)
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where Le is the length of the nonporous beam ends: Le = L−(Nh−1)S−D
2 .

Using the finite difference method to expand the derivatives, we arrive at a matrix
equation, B = AT, where the elements of B are

Bi = −I2ρo (1 − αTo)

HmWi
(A4)

and the elements of A are

Ai,i−1 = −
(

Hmkm + Hks,i

4�x2

)
(Wi+1 − Wi−1) + Hmkm + Hks,i

�x2
Wi − HWi

4�x2

(
ks,i+1 − ks,i−1

)
, (A5)

Ai,i = I2ρoα

HmWi
− 2

(
Hmkm + Hks,i

)
Wi

�x2
, and (A6)

Ai,i+1 =
(

Hmkm + Hks,i

4�x2

)
(Wi+1 − Wi−1) + Hmkm + Hks,i

�x2
Wi + HWi

4�x2

(
ks,i+1 − ks,i−1

)
. (A7)

Given the beam width and thermal conductivity as a function of position, the temperature
profile along the nanoladder can be found by inverting the matrix A: T = A−1B. The total
electrical resistance of the beam is then found from summing the resistance of the differ-
ential elements of the beam R = ∑

i

�x
ρ(Ti)HmWi

, accounting for the temperature-dependent

resistivity. Note that for regions with holes, the beam width Wi is the total width of the
silicon. In other words, at positions corresponding to the center of a hole, the width of the
element is Wi = W – D.

APPENDIX B: DETAILS OF THE RANDOM PATH TRACING PHONON

SCATTERING MODEL

For a nanobeam with an arbitrary cross section, we take the following approach
to generate a reduction function analogous to that of the Sondheimer-Chambers [32, 33]
approach:

1. Consider a single intrinsic mean free path E0 (corresponding to a reduced thickness δ =
H/�0).

2. Select a random phonon start position (x, y) and propagation direction (θ, ϕ).
3. Calculate the distance that the phonon would travel before scattering at boundary (

____
OP).

4. Calculate the mean free path of the ith phonon, �i, by selecting the smaller of the
distance

____
OP and the intrinsic mean free path �0.

5. Repeat steps 2–4 for many start positions and propagation directions.

6. Compute the reduction function F (δ, AR) = 1
Np�0

Np∑
i=1

�i, where Np is the number of

paths considered in step 5.
7. Repeat steps 1–6 to generate the reduction function for a range of mean free paths

(reduced thicknesses).

To include the effect of pore scattering, a few modifications to the algorithm for the
nanobeam are required. Specifically, phonons must be allowed to start anywhere within
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an entire period of the pore structure and can scatter due to either bulk processes, pore
boundary scattering, or scattering at the boundary of the nanobeam. Many pores must be
considered because some of the phonons may not impact the first pore but one further down
the nanoladder. The new algorithm to compute the reduction function is explained below:

1. Consider a single intrinsic mean free path �0 (corresponding to a reduced thickness δ =
H/�0).

2. Select a random phonon start position (x, y, z) and propagation direction (θ, ϕ). The
start position is selected so that no phonon starts in a hole. A full unit cell of the pore
geometry is considered instead of a single cross section.

3. Calculate the distance that the phonon would travel before scattering at an external
nanobeam boundary (

____
OP).

4. Calculate the distance that the phonon would travel before scattering at a pore boundary
(
____
OR). The propagation path of many phonons will never intersect a pore boundary, in

which case
____
OR = ∞.

5. Calculate the mean free path of the ith phonon, �i, by selecting the smaller of the
distances:

____
OP,

____
OR, and �0.

6. Repeat steps 2–5 for many start positions and propagation direction.
7. Compute the average of the mean free paths for this value of intrinsic mean free path

and the reduction function F(δ, AR, S, D) = 1
Np�0

Np∑
i=1

�i, where Np is the number of paths

considered in step 6.
8. Repeat steps 1–7 to generate the reduction function for a range of mean free paths

(reduced thicknesses).
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