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ABSTRACT

Subcontinuum phonon conduction phenomena impede the cooling of field-effect
transistors with gate lengths less than 100 nm, which degrades their performance
and reliability. Thermal modeling of these nanodevices requires attention to a broad
range of length scales and physical phenomena, ranging from continuum heat dif-
fusion to atomic-scale interactions and phonon confinement. This review describes
the state of the art in subcontinuum thermal modeling. Although the focus is on
the silicon field-effect transistor, the models are general enough to apply to other
semiconductor devices as well. Special attention is given to the recent advances in
applying statistical and atomistic simulation methods to thermal transport.
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1. INTRODUCTION

Ever since Dennard et al. [1] demonstrated that
faster semiconductor devices could be fabri-
cated by reducing device dimensions such that
the electric field remained constant, device scal-
ing has been the driver in VLSI technology. In
keeping with Gordon Moore’s 1965 forecast [2],
semiconductor devices have continuously di-
minished in size over the past four decades
yielding larger scale integration and faster com-
puting. However, traditional device scaling
faces new challenges in the near future as the
minimum device feature length decreases be-
low 100 nm. Besides the complexity of de-
signing devices at these length scales, the twin
issues of power dissipation and heat removal
emerge as dominant concerns. The fundamen-
tal unit of an integrated circuit, the metal-oxide
semiconductor field-effect transistor (MOSFET)
produces nearly 0.5 mW of Joule heat per unit
micrometer width in the current 90 nm gate
length technology. Heat generation occurs
within the inversion layer at the interface of The
f and g processes are shown in a (110)-plane
to identify the wave vectors of the involved
phonons. The f-process phonon has the wave
vector qf and the g-process phonon has the
wave vector qg purely from geometry consid-
erations.the channel region and the drain ter-
minal, over a length of around 20 nm, with the
peak power density approaching 5 W/µm3 [3].
At this length scale, the assumption of contin-
uum heat conduction breaks down. Instead,
conduction is described in terms of the energy
quanta of lattice vibrations called phonons. Un-
derstanding thermal transport at the device
level is becoming increasingly important as fu-
ture technology evolves toward devices with
larger internal thermal resistances and higher
heat generation per unit volume. Figure 1
shows a schematic of the traditional bulk sil-
icon MOSFET as well as various exploratory
candidates for future commercial nanotransis-

tors. Compared to a bulk device, novel devices
such as the strained silicon FET and the vari-
ous silicon-on-insulator (SOI) [4,5] devices offer
better electrical performance, though at the cost
of a higher thermal resistance. This is more so
in the case of more revolutionary designs such
as the three-dimensional FINFET [6].

A digital circuit is typically designed such
that the peak transistor temperature does not
exceed 80–100◦C [7]. In current bulk silicon
devices, the temperature rise is assumed to be
largely dictated by heat transfer outside the
transistor. The thermal resistances due to the
silicon substrate, the thermal interface material
(TIM), the external heat sink, and convection to
the ambient add up to about 0.5 K/W [8]. How-
ever, for nanotransistors with dimensions as
small as several tens of nanometers, thermal re-
sistances arising from subcontinuum phenom-
ena inside the device become equally impor-
tant. By using an undoped silicon film as the
transistor channel, SOI devices such as the dual
gate transistor [4], the ultrathin-body transis-
tor [5], and the FINFET [6] offer better cur-
rent control due to improved electrostatics and
reduced short-channel effects. However, the
buried oxide layer increases the thermal resis-
tance of the device, resulting in a relatively
higher temperature rise compared to a bulk de-
vice for the same power dissipated. Further,
the spatial extent of the heat source can be as
small as 4 nm (full width at half maximum) in
a nanotransistor, as shown in Fig. 2, and the
peak power density may approach 60 W/µm3.
Thermal measurements near such highly local-
ized heat sources [9] indicate that heat conduc-
tion is impeded in the vicinity of the source due
to ballistic phonon transport. The heat source
in a nanotransistor exhibits similar behavior by
forming a localized phonon hotspot with a high
thermal resistance. Thus, innovations on the
electrical side invariably lead to a poor thermal
design, augmenting the thermal resistance in-
ternal to the device. Performance optimization
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FIGURE 1. The schematics show various FET device structures starting from the bulk silicon MOSFET on
the top left. The locations of the source (S), drain (D) and gate (G) terminals are indicated as is location of
the buried oxide (BOX) layer. The stained silicon FET uses a strained silicon layer as the channel for electron
flow, which enhances the mobility of electrons. The use of dual gates and an ultrathin film silicon channel
enables better current control in short-channel devices. The FINFET is a three-dimensional structure with
the gate surrounding a vertically oriented fin that serves as the channel
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FIGURE 2. The location of the heat source is shown in an ultrathin body SOI transistor with a gate length
of 18 nm [7]. The contours correspond to the spatial distribution of the heat generated inside the device
and are equispaced at 0.5 W/µm3 with a peak value of 60 W/µm3 at the center
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requires electrothermal models that incorpo-
rate microscopic electron-phonon and phonon-
phonon interactions.

In this paper, we review heat conduction
modeling in semiconductor devices at multi-
ple length scales, from the lattice spacing at
a few tenths of a nanometer to the phonon
mean free path at a few hundred nanometers.
The focus is largely on research from the past
decade on silicon nanoelectronics, though ther-
mal modeling in gallium arsenide and other
optoelectronic devices is also referenced where
appropriate. In particular, we have chosen
to ignore more exotic nanoelectronic devices
such as molecular devices, quantum-effect de-
vices and single electron devices [10], the rea-
son being that thermal aspects of these de-
vices remain of secondary concern and have re-
ceived very little attention. We begin with an
overview of subcontinuum heat conduction in
Section 2. In Section 3, we categorize differ-
ent approaches to modeling heat transport in
nanostructures. Investigations of electrother-
mal transport in semiconductor devices are re-
viewed in Section 4. The issue of modeling cou-
pled length scales is discussed briefly in Sec-
tion 5. The review concludes in Section 6 with
a summary of some of the outstanding issues
in modeling thermal transport at nanoscales, as
well as some of the new issues posed specifi-
cally by research on nanoscale semiconductor
devices.

2. LATTICE HEAT CONDUCTION

Atoms located at the lattice sites of a dielec-
tric crystal undergo small oscillations about
their equilibrium positions at every tempera-
ture. The resulting atomic displacement field in
the crystal stores and transports energy. Clas-
sically, this is described by a displacement vec-
tor obeying a linear, homogeneous wave equa-
tion of second order in space and time. Thus,
the field may be described as superpositions

of plane waves, with the frequency and wave
vector obeying a nonlinear dispersion relation-
ship. These so-called normal modes of the crys-
tal can have multiple polarizations, depend-
ing on whether the displacement is perpendicu-
lar (transverse) or parallel (longitudinal) to the
wave vector. In the long wavelength limit, the
longitudinal vibrations are essentially identical
to sound waves in a solid. Quantum mechan-
ically, the atomic displacement field may be
described either as an infinite number of dis-
tinguishable, quantized oscillators, or as a gas
of indistinguishable particles called phonons.
The particle description is particularly useful in
treating interactions with other systems such as
electrons. In thermal equilibrium, phonons are
described by the Planck distribution, which ap-
plies to bosons without rest mass and without
conservation of particle number.

The calculation of the heat capacity and the
thermal conductivity of a solid requires knowl-
edge of the phonon dispersion relationship.
The formalism for obtaining the dispersion re-
lationship employs the concept of a crystal po-
tential function to describe the chemical bind-
ing of atoms. The justification for this was
first provided by Born and Oppenheimer in the
context of molecular motion and is referred to
as the adiabatic approximation [11]. The ar-
gument is based on the fact that the frequen-
cies of atomic motions are much smaller than
the electronic transition frequencies. The elec-
tronic system continuously adjusts itself with-
out changing its quantum number as atoms vi-
brate about their mean positions. This allows
the use of an effective crystal potential with-
out solving for the electron system. In ad-
dition to the adiabatic approximation, a sec-
ond approximation known as the harmonic ap-
proximation is made in computing the disper-
sion relationship. The crystal potential is ex-
panded in terms of the powers of the ampli-
tudes of the vibrations and all terms beyond
the second order are neglected, in effect mak-
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ing the interatomic “spring” harmonic. The
atomic motions are now described by an eigen-
system whose eigenvalues are related to the
phonon frequencies. Solution of this eigensys-
tem constitutes the problem of lattice dynam-
ics [12]. A bulk crystal may be assumed to be
infinite in extent and the Born-von Karman pe-
riodic boundary conditions can be applied to
further simplify the equations. Figure 3 shows
the phonon dispersion in silicon along the di-
rections of high symmetry in the crystal. Sili-
con has a diatomic basis which leads to phonon
modes in which atoms in a primitive cell vi-
brate out of phase. These are referred to as opti-
cal phonons. The vibrations in which the basis
atoms move in phase are referred to as acous-
tic phonons. Transverse (T) and longitudinal
(L) polarizations of optical (O) and acoustic (A)
phonon branches are indicated in the figure.

The harmonic approximation, though useful
in calculating the phonon dispersion relation-
ship, does not capture the physics of phonon-
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FIGURE 3. The phonon dispersion relationship is
shown along directions of high symmetry in silicon.
Longitudinal and transverse polarizations are indi-
cated by L and T respectively. The letters O and A
refer to optical and acoustic branches, respectively.
The slope of the dispersion curve gives the group
velocity of the particular phonon mode

phonon interactions and scattering. If the crys-
tal potential were indeed harmonic, phonons
in an infinite and perfect crystal would have
unlimited lifetimes, resulting in infinite ther-
mal conductivity. We know conclusively that
this is not true even at very low temperatures.
Additionally, a harmonic crystal would not
show any thermal expansion. In a real crystal,
atomic interactions are anharmonic, causing
the phonons to scatter with each other, even in
a defect-free crystal. The lowest-order scatter-
ing process involves three phonons, as shown
in Fig. 4. A phonon traveling in the crystal can
be annihilated to create two other phonons.
The phonon is described in the schematic by
its angular frequency ω, which is a function of
its wave vector q and its polarization s. An
inverse process is equally possible from the
principle of microscopic reversibility. Higher-
order processes, such as one involving four
phonons, are also possible. All such processes
must ensure microscopic conservation of en-
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FIGURE 4. Anharmonic interactions between
phonons leads to phonon-phonon scattering. The
lowest-order process involves three phonons as
shown schematically on top. Higher-order pro-
cesses, such as one involving four phonons (bot-
tom), are also possible
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ergy and crystal momentum. Anharmonicity is
treated as a small perturbation to the harmonic
Hamiltonian for the crystal, and the lifetimes of
phonons are computed using time-dependent
quantum mechanical perturbation theory [13].

The level of detail that a heat conduction
model must include depends on the length
scale of the problem and the temperature. The
phonon distribution obeys quantum statistics
at low temperatures, but approaches the clas-
sical limit as the lattice temperature approaches
the Debye temperature θD. Thus, quantum me-
chanical details that must be accounted for at
very low temperatures become less important

at higher temperatures. The length scale of the
problem determines whether phonons may be
modeled as particles or whether the wave na-
ture of phonons is important. We note here that
the latter does not necessarily imply a quan-
tum mechanical description. In fact, the clas-
sical description of crystal vibrations involves
lattice waves. The particle behavior comes from
the quantum nature of these waves. The im-
portant length scales for comparison are the
phonon mean free path Λ, the phonon wave-
length λ, and the lattice spacing a0. The valid-
ity of various modeling regimes is summarized
in Fig. 5. The diffusion length is included for
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FIGURE 5. Subcontinuum thermal modeling depends on the dimension of the system and the tem-
perature. At dimensions comparable to the phonon wavelength and temperatures much smaller than the
Debye temperature (bottom left), quantum mechanical nature is strongly manifest. At larger dimensions
and room temperatures, a semiclassical approach is more pragmatic. PT in the figure stands for perturba-
tion theory and α is the thermal diffusivity
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the sake of completeness. Typical silicon semi-
conductor device dimensions lie in between
the phonon mean-free path and the dominant
phonon wavelength in room-temperature sili-
con. As shown in the figure, semiclassical or
classical models are applicable in this regime.
When domain dimensions are comparable to
the phonon wavelength and the temperature
is small compared to the Debye temperature,
a quantum mechanical model is necessary. Fi-
nally, the extent of the crystal can alter the
phonon dispersion relation [14] and the density
of phonon states. As dimensions of the crys-
tal are reduced, surface effects become impor-
tant and the assumption of an infinite crystal
does not hold along one or more dimensions.
We review the different approaches indicated in
Fig. 5 in the following sections.

3. MODELING PHONON TRANSPORT IN
NANOSTRUCTURES

At nanoscale dimensions, it becomes possi-
ble to engineer electron and phonon transport
by controlling the physical dimensions of the
structures, which influences available states.
Examples of nanostructures include quantum
wells, quantum dots, and superlattices, which
are common in optoelectronics and are cur-
rently being investigated for thermoelectric ap-
plications [15]. Silicon transistors, in con-
trast, did not start out by exploiting quantum
mechanical length scales but are nevertheless
approaching such dimensions through device
scaling [7]. Since phonon wavelengths domi-
nating heat conduction in silicon are approx-
imately 1–2 nm at room temperature, a full
quantum treatment of phonons is rarely war-
ranted. In this section, we review general semi-
classical and classical methods for modeling
phonon transport. Semiclassical modeling in-
volves either the use of the phonon Boltzmann
transport equation (BTE) [16] with varying de-
tails of the phonon dispersion relationship, or

the Monte Carlo (MC) [17] technique to sta-
tistically simulate phonon transport. Another
choice is molecular dynamics [18], which is
classical in origin and involves the use of sta-
tistical mechanics to compute transport coeffi-
cients. Molecular dynamics does not assume
the validity of the BTE, but can be used to com-
pute physical parameters needed by the BTE.
Figure 6 summarizes the hierarchy of semiclas-
sical thermal modeling and highlights the main
features of each approach. We focus on the
methods in this section, and discuss their ap-
plication to semiconductor device problems in
the next section.

3.1 Boltzmann Transport Equation

The phonon Boltzmann transport equation de-
scribes the rate of change of a statistical distri-
bution function for phonons. The fundamental
assumption in deriving the phonon BTE is that
there exists a distribution function, Nq,s(r, t),
which describes the average occupation of the
phonon mode (q, s) in the neighborhood of
a location r at a time t. The equation as-
sumes the simultaneous prescription of phonon
position and momentum with arbitrary preci-
sion. However, in quantum mechanics these
quantities correspond to noncommuting oper-
ators and, hence, obey the uncertainty princi-
ple. The semiclassical BTE for phonons resolves
this contradiction by treating phonons as wave
packets [19] (see Fig. 7 for example) formed
from a superposition of normal modes of the
crystal. Each wave packet has a small spread
δq in the wave vector and is localized in space
in a region of size δr such that δqδr ∼ 1. The
wave packet is constructed such that its group
velocity corresponds to the slope of the phonon
dispersion relationship. For a detailed discus-
sion on the validity of the wave packet picture,
we refer the reader to Ref. [19]. In the semiclas-
sical model, the number of phonons becomes a
function not only of the wave vector q and po-
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FIGURE 6. Sub-continuum thermal modeling uses either the phonon BTE or the MC/MD methods.
Though all approaches include the role of phonon dispersion, the exact dispersion relationship taken into
account differs between various approaches

FIGURE 7. A phonon wave packet [3] created from a linear combination of the eigenmodes is shown.
The longitudinal displacements of individual atoms at different axial locations are shown on the left and
the corresponding energy distribution is shown on the right
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larization s, but also of the spatial coordinate r.
The distribution function evolves in time in a
six-dimensional phase space due to motion in
real space, due to anharmonic scattering with
other phonons, and due to scattering with im-
purities and boundaries. The BTE is formally
written as

∂Nq,s

∂t
+ vq,s · ∇Nq,s =

∂Nq,s

∂t

]

c

(1)

where (q,s) refers to the phonon mode with
wave vector q and polarization s, v is the group
velocity, N is the phonon occupation number,
and the term on the right-hand side is the rate
of change due to collisions.

The solution to the phonon BTE requires
evaluation of the collision term. Although
Peierls [19] obtained the formal expression as
an integral in wave vector space over all al-
lowed scattering processes, it is too compli-
cated to be directly evaluated in practice. In-
stead, the relaxation time approximation has
been widely used to model the collision term.
Under this approximation, the BTE is rewritten
as

∂Nq,s

∂t
+ vq,s · ∇Nq,s = −Nq,s −N

τq,s
(2)

where N is the Planck distribution at the lo-
cal temperature and τ is the relaxation time of
the mode (q,s). Thermal conductivity models
based on the solution to the phonon BTE under
the relaxation time approximation are available
in the literature [20–23]. In a more rigorous ap-
proach, Guyer and Krumhansl [24] used colli-
sion operators to represent normal (elastic) and
umklapp (inelastic) scattering and obtained the
formal solution for thermal conductivity in
terms of the matrix elements of the operators.
The relaxation times derived in Refs. [20–23]
appear as special limiting cases in the full op-
erator solution. However, the computation

of operators is cumbersome and has not been
adopted in solving device problems so far. The
relaxation time approximation has emerged as
the default choice in almost all of the literature
on microscale heat conduction. The derivations
of the relaxation times involve time-dependent
perturbation theory from quantum mechanics
(see Ref. [13], for example). Klemens [20] and
others [22,23] have developed semiempirical
expressions for the relaxation rates that model
thermal conductivity data over a wide range of
temperatures. It is important to note that in
the original work [23], the group velocity has
been used interchangeably with the phase ve-
locity. The expressions must be corrected when
using a realistic nonlinear dispersion relation-
ship [25,26].

A key conceptual problem in using the re-
laxation time approximation is the requirement
for a thermodynamic temperature that governs
the scattering rate. Since phonons are not in an
equilibrium distribution, there is no tempera-
ture to strictly speak of. The usual practice in
such nonequilibrium problems is to define an
ad hoc “equivalent” temperature based on the
local energy [27–30]. We note that a Planck dis-
tribution based on the equivalent temperature
does not represent the local phonon population
in most cases.

3.1.1 Equation of Phonon Radiative Transfer
(EPRT)

The phonon occupation can be solved to first
order by linearizing the gradient term in the
BTE. The solution is of the form

N = N(T )− τq,svq,s · ∇T
∂N

∂T
(3)

The second term in the solution is the first-
order departure from equilibrium and con-
forms to the Fourier heat flux law. The above
first-order approximation works well, provided
the temperature gradient is small enough so
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that the temperature does not vary appreciably
over the relaxation length [20]. This is formally
expressed as

∂T

∂x
vτ ¿ T (4)

and is usually valid except at length scales com-
parable to the phonon mean free path. Ma-
jumdar [27] pointed out the limited usability
of the above solution in modeling transport in
thin films and instead proposed the equation of
phonon radiative transfer (EPRT). The EPRT is
written in terms of the phonon intensity Iω with
the one-dimensional form being

1
v

∂Iω

∂t
+ µ

∂Iω

∂x
= −Iω − I0

ω(T (x))
vτ

(5)

where µ is the direction cosine and v is the De-
bye velocity. The phonon intensity is given as

Iω =
∑

s

vN(ω(q, s), x, t)~ωg(ω) (6)

where g(ω) is the phonon density of states.
In order to rigorously derive the EPRT from
Eq. (2), the nonlinear phonon dispersion rela-
tionship of Fig. 3 must be replaced by the lin-
ear Debye model. The EPRT reproduces the
expected radiative behavior in the acoustically
thin limit and conforms to the Fourier heat flux
law in the continuum limit.

Besides thin films [27,31,32], radiative
phonon transport has been used to investigate
interfacial transport [33], subcontinuum heat
sources [34], and ballistic conduction from
nanoparticles [28]. Prasher [35] recently ex-
tended the EPRT to include phase information
in the in-scattering term on the right-hand side.
However, the use of the Debye model limits
the accuracy of the EPRT. While the Debye
model is very accurate in predicting the specific
heat capacity of a crystal, it is less accurate
in describing transport. Nonlinearity in the
phonon dispersion relationship of real crystals

plays an important role in determining thermal
conductivity.

3.1.2 Energy Moment of the Phonon BTE

An energy moment formulation of the BTE [30]
involves taking a density-of-states-weighted
frequency moment of the BTE. Using the Debye
model, the moment equation is written as

∂e′′

∂t
+ v · ∇e′′ = −e′′ − e′′EQ

τ
(7)

where e′′EQ and e′′ are the equilibrium energy
and the excess energy, respectively, per unit
volume per unit solid angle. The excess energy
is given by

e′′ =
∫
~ω

[
N −N(Tref)

]
g(ω)dω (8)

Equation 7 can be further simplified by as-
suming an isotropic distribution and integrat-
ing over the solid angle. The resulting local en-
ergy density can be expressed in terms of the
volumetric heat capacity C and a nonequilib-
rium lattice temperature TL, such that Eq. (7)
reduces to [36,37]

∂TL

∂t
+

1
C

v · ∇TL = −TL − TEQ

τ
(9)

3.1.3 Ballistic-Diffusive Equations (BDE)

The ballistic-diffusive equations (BDE) [29] are
based on the phonon BTE and involve an a pri-
ori description of the phonon distribution func-
tion. The BDE divides the distribution func-
tion N at any point into a ballistic, Nb, and
a diffusive part, Nm. The ballistic part origi-
nates from the boundary and experiences out-
scattering only while the diffusive part origi-
nates inside the domain and evolves through
in-scattering or through a source term. The
equations are formally written as
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1
|v|

∂Nb

∂t
+ Ω̂ · ∇Nb = − Nb

|v|τ
∂Nm

∂t
+ v · ∇Nm = −Nm −N

τ
(10)

where Ω̂ is the unit vector along the direction
of propagation.

The BDE has been shown to reasonably ap-
proximate the phonon BTE while requiring less
computations. However, the comparisons were
made using an energy moment formulation un-
der a gray-body approximation for phonons. It
will be interesting to compare the BDE with the
phonon BTE for a realistic phonon dispersion
relationship. Another formulation that is con-
ceptually close to the BDE but involves the non-
local formulation described below, is the split-
flux model [38]. This is discussed in Section 4.

3.1.4 Nonlocal Formulation

The nonlocal formulation [39,40] was devel-
oped for heat conduction problems where the
phonon mean free path is comparable to do-
main dimensions or where the time scale of in-
terest is comparable to the phonon relaxation
times. Under such conditions, Eq. (4) is not sat-
isfied and it is necessary to retain higher-order
terms in the departure function. For simple
domains, the departure function can be solved
by direct integration of the BTE under the re-
laxation time approximation. The solution in-
volves a nonlocal integral in space and a retar-
dation function in time. The nonlocal formula-
tion has the advantage that it does not require
simplifying assumptions about the phonon dis-
persion relationship. The departure function
can be integrated with full phonon dispersion
information to yield the heat flux, the local en-
ergy density, and a nonequilibrium equivalent
temperature field. Figure 8 compares the tem-
perature fields computed for a one-dimensional
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DIFFUSION

FIGURE 8. The temperature rise near a 40 nm long
sheetlike symmetric heat source [38] is computed
using the nonlocal formulation and compared to
that from heat diffusion using Fourier law. The dif-
ference in the peak temperatures scales as the power
density at the source

nanoscale phonon source [38] using the non-
local formulation and the heat diffusion equa-
tion, respectively. While the nonlocal formula-
tion provides more information than moments
of the BTE by solving directly for the phonon
distribution function, it becomes computation-
ally expensive if the geometry is complex. It
may be advantageous in such cases to opt for a
Monte Carlo solution instead. This is discussed
in the next subsection.

3.2 Monte Carlo Simulations

The Monte Carlo (MC) method is a statistical
sampling technique [17] that can be applied to
a wide variety of problems, from simulating
neutron trajectories in a reactor to solving an
integration in multidimensional space. In the
MC method, a physical process may be simu-
lated directly without requiring knowledge of
the underlying governing equations. The sole
requirement is that the process be describable in
terms of probability density functions (PDFs).
The simulation proceeds by sampling from the
PDFs using a computer generated sequence of
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random numbers. The MC technique can be
used to simulate thermal transport by a distri-
bution of phonons. The method involves track-
ing the trajectories of individual phonons in
phase space, given the PDFs associated with
various scattering events.

While there has been rapid development in
the MC method for electron transport in semi-
conductor devices, phonon MC is still in its
infancy. This may be attributed partly to a
lack of a compelling need to model subcontin-
uum transport in engineering problems. An-
other explanation is the difficulty of using MC
to simulate particles whose number is not con-
served. With the first reason fast vanishing,
phonon MC is likely to draw more attention in
the near future. Klistner et al. [41] employed the
MC method to study radiative phonon trans-
port in a crystal. Phonons were assumed to
travel ballistically between the crystal surfaces
and all scattering occurred at the interfaces. Pe-
terson [42] reported phonon MC studies that in-
cluded scattering within the crystal, but used a
linear Debye dispersion.

Mazumder and Majumdar [43] developed a
more comprehensive MC scheme for acoustic
phonons that includes isotropic phonon disper-
sion. In this scheme, phonons are introduced
into the crystal based on a probability dictated
by the product of the phonon density of states
and the Planck distribution function at a lo-
cal temperature. Heat conduction in the crys-
tal occurs due to the motion of the phonons
at their individual group velocities. A bound-
ary may specularly or diffusely scatter phonons
as well as radiatively emit or absorb phonons.
Phonon-phonon and phonon-impurity scatter-
ing within the bulk can annihilate a phonon.
Energy conservation is the weak point in the
scheme since details of microscopic interactions
are overlooked. In the absence of microscopic
energy conservation, an ad hoc global conserva-
tion scheme is used. In this scheme, the energy
lost due to phonon annihilation is recovered by

reintroducing phonons sampled from a Planck
distribution based on the local energy density
before annihilation. Despite this shortcoming,
the scheme shows good agreement with data
for thin-film thermal conductivity and is a very
promising start to more detailed MC simula-
tions. The power of the method lies in its abil-
ity to study the underlying physics of phonon
transport, which cannot be accessed through
the BTE methods described above.

Phonon-phonon scattering events are partic-
ularly difficult to model rigorously in a phonon
MC scheme. To appreciate the complexity,
one may consider the probability for the sim-
plest phonon-phonon scattering event involv-
ing three phonons. Assuming a momentum
conserving normal process [16], a phonon with
frequency ω, wave vector q, and occupation
N can be created from a combination of two
phonons with frequencies ω′, ω′′; wave vectors
q′,q−q′; and occupations N ′, N ′′, respectively.
Using the time-dependent perturbation theory
from quantum mechanics, the rate of transition
from the initial to the final state is

W =
2π

~
|〈f |Φ3|i〉|2 δ (Ef −Ei) (11)

where f represents the final state, i represents
the initial state, E is the energy, and Φ3 is the
third-order term in the expansion of the crystal
potential. The sum total of all three-phonon in-
teractions yields an expression for the net tran-
sition rate as follows [44]:

W =
~

128π2M3

∑

j′j′′s

∫
dq

∣∣bjj′j′′(q,q′,q− q′)
∣∣2

ωω′ω′′

× {δ(ω − ω′ − ω′′) [(N+1)N ′N ′′

− N(N ′+1)(N ′′+1)] + 2δ(ω + ω′ − ω′′)

[(N+1)(N ′+1)N ′′−NN ′(N ′′+1)]}
(12)

where M is the atomic mass, j, j′, j′′ represent
indices for the three phonons, and b is a matrix
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element obtained from the third-order deriva-
tive of the potential. The integration is carried
out over the Brillouin zone of the crystal. To
use a rigorous probability for scattering that in-
cludes the microscopic conservation of energy
and crystal momentum, transition rates such
as Eq. (12) need to be evaluated at each time
step in an MC calculation, which is clearly in-
feasible. The use of semiempirical relaxation
rates [22,23] derived from thermal conductiv-
ity modeling is the current method in phonon
MC. However, as pointed out in Section 2, these
rates need to be carefully reexamined to remove
some of the simplifying assumptions regarding
the phonon dispersion relationship. An alter-
nate method for evaluating relaxation rates is to
use detailed molecular dynamics simulations.
This is discussed in the next subsection.

3.3 Molecular Dynamics Simulations

Molecular dynamics (MD) refers to the solu-
tion of classical equations of motion (Newton’s
laws) for a set of molecules. In the context
of phonon transport in solids, this amounts to
solving the dynamics of atoms in a crystal lat-
tice. As described in Section 2, atoms at a lattice
site are free to undergo small oscillations driven
by interatomic forces. For a system of p atoms
interacting through a potential V , the equation
of motion for the i-th atom is

mir̈i = fi = −∇riV (13)

where r is the position, m is the mass, and f is
the force on the atom. The interatomic potential
has the general form

V =
∑

i

v1(ri) +
∑

i

∑

j>i

v2(ri, rj)

+
∑

i

∑

j>i

∑

k>j>i

v3(ri, rj , rk) + . . . (14)

where v1 is the self potential, v2 is the contribu-
tion from pairs of atoms, and v3 is the contri-
bution from triplets of atoms. A potential that
includes terms only up to v2 is called a pair po-
tential. A three-body potential includes terms
up to v3. Finite difference algorithms [18] such
as the Verlet or the Gear predictor-corrector are
used to solve the system at each time step,
which is usually less than a femtosecond. Com-
putational constraints dictate that a trade-off be
made between the size of the system and the
time for the simulation. Since the maximum
phonon wavelength is given by the size of the
system, long wavelength phonons are cut off in
an MD simulation. Use of periodic boundary
conditions and a careful choice of the system
size offsets this limitation. Parallelization per-
mits simulations of systems comprising tens of
thousands of atoms. To provide an idea of com-
putational requirements, a 50 ps simulation of
a 10,000 atom silicon system with a three-body
potential requires approximately two days of
computer time on 48 nodes of a Pentium-class
cluster.

At the core of the MD calculation is the inter-
atomic potential used. The nature of the chemi-
cal bonds decides the type of forces that must
be taken into account by the potential. The
simplest potential is the well-known Lennard-
Jones potential that models weak dipole-dipole
van der Waals bonding. Silicon, however, has
highly directional covalent bonds and cannot
be described by a pair potential. Three-body
potentials [45,46] account for bond directional-
ity by including the effect of bond bending in
addition to bond stretching, and can describe a
silicon crystal with reasonable accuracy. For an
excellent comparison of silicon interatomic po-
tentials, we refer the reader to Ref. [47].

The literature on MD simulations of heat
transport may be divided into two broad cat-
egories: the calculation of thermal conductivity
and the calculation of phonon relaxation times.
The output from an MD simulation provides
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the position and momenta of the atoms at each
time step. A thermodynamic property may be
obtained from this information using statisti-
cal mechanics [18]. Calculation of a transport
coefficient such as the thermal conductivity re-
quires use of the Green-Kubo relation derived
from the linear response theory [48]. Using lin-
ear response theory, the thermal conductivity
can be expressed as an autocorrelation function
of the heat current [48,18] as follows

K =
V0

kBT 2

∫ ∞

0
dt 〈jα(t)jα(0)〉 (15)

where jα(t) is the heat current at time t (the sub-
script refers to a Cartesian component) and V0 is
the volume. Thus, thermal conductivity can be
calculated from the fluctuations in the thermal
current in a system under thermal equilibrium.
The nonequilibrium method involves imposing
a temperature gradient on the system and com-
puting the resulting heat current. In an alter-
nate approach, the temperature gradient may
also be computed in response to an imposed
heat current [49]. For a comprehensive compar-
ison of equilibrium and nonequilibrium meth-
ods to compute the thermal conductivity, we re-
fer the reader to Ref. [50].

The literature on thermal conductivity cal-
culation using MD covers a variety of mate-
rials. We point out studies on materials and
structures of current interest: thin films [51],
nanowires [52], superlattices [53,54], strained
materials [55,56], diamond [57], and carbon
nanotubes [58–61]. The use of MD to study
phonon lifetimes and phonon-phonon scatter-
ing is much more limited. The MD method
has been used to study the lifetimes of vibrons
(analogous to phonons) in glasses by Fabian
and Allen [62], and later by Bickham and Feld-
man [63]. Oligschleger and Schön [64] have in-
vestigated the decay of single phonon modes in
selenium and quartz. Ladd et al. [65] have com-
pared MD calculations with classical perturba-
tion theory calculations to show good agree-

ment in thermal conductivity and phonon life-
times. McGaughey and Kaviany [66] have used
a Lennard-Jone argon crystal to investigate the
validity of single-mode relaxation time (SMRT)
approximation, commonly used to solve the
phonon BTE. They compute the thermal con-
ductivity of the crystal using the BTE, with the
relaxation times derived from MD simulations
instead of empirical fits. In comparing these
calculations with those based on the Green-
Kubo formulation, they found that the agree-
ment depended on the degree to which dis-
persion is taken into account. The general ap-
plicability of the semiempirical relaxation time
models [22,23], which employ several fitting
parameters, is thus doubtful. Molecular dy-
namics simulations can greatly help in this case
by providing a methodology to extract relax-
ation rates for any novel material in a sys-
tematic manner. More general topics on MD
simulations are covered in a recent review by
Poulikakos et al. [67].

4. ELECTROTHERMAL TRANSPORT

Thermal transport in a semiconductor device is
strongly coupled with charge transport through
electron-phonon interactions. The electrons in
the channel gain energy from the applied elec-
tric field and subsequently lose it to the lat-
tice while restoring thermodynamic equilib-
rium through scattering. Electrons may also
absorb phonons, thereby gaining energy from
the lattice. This occurs near the device source
where phonon absorption enables the less en-
ergetic electrons to overcome the potential bar-
rier. At the drain terminal, electrons shed en-
ergy gained from the field by emitting phonons.
In addition, charge carriers also interact with
photons during generation and recombination.
The overall thermodynamic system compris-
ing electrons, holes, phonons, and photons is
shown schematically in Fig. 9, along with the
paths for energy exchange.
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FIGURE 9. The schematic, adapted from Ref. [70],
shows the different thermodynamic systems in a
semiconductor device and their energy interaction
pathways

Electrothermal modeling in devices may be
split into a two-step problem. The first step
involves modeling the transport of charge car-
riers to extract the heat source distribution in
the device. The second step is to model the
transport of phonons and calculate the result-
ing temperature distribution in the lattice. The
interaction of charge carriers and phonons is
a many-body problem in quantum mechanics,
and a holistic treatment ensuring rigorous self-
consistency is not practical. We classify elec-
trothermal modeling in literature as belonging
to one of two categories. The first develops
fully coupled models, but makes simplifying
assumptions regarding transport by electrons
and phonons and their interactions. The second
philosophy is to consider heat generation and
transport as two separate problems and treat
each as rigorously as possible.

In this section, we begin with a brief
overview of electron transport modeling in the
context of a transistor. Although we do not dis-
cuss hole transport explicitly, the approach for
holes is similar to that for electrons. We next
discuss the physics of heat generation through
electron-phonon scattering. Finally, we review
the literature on the two classes of electrother-
mal models as discussed above.

4.1 Modeling of Charge Transport

Semiclassical electron transport in a device
is governed primarily by three sets of equa-
tions [68]. The first is a set of equations for
conservation of particles. The second set re-
lates the particle currents to the field and the
particle gradients. Finally, the Poisson equa-
tion provides the electrostatic potential inside
the device due to charged immobile dopant
atoms and mobile carriers. This basic descrip-
tion comprises what is known as the drift-
diffusion model [68,69]. The drift-diffusion
model does not include an energy conservation
equation, but instead assumes isothermal con-
ditions. This leads to inaccuracies in the dif-
fusion term. The next model in the hierarchy
is the hydrodynamic model, which includes
an energy equation and models temperature-
dependent diffusion in the equation for the
particle current. In both the drift-diffusion
and the hydrodynamic models, the constitu-
tive equations for charge continuity and parti-
cle momentum are derived by taking moments
of the Boltzmann equation for electrons. In
the hydrodynamic model, heat generation is
treated rigorously using irreversible thermody-
namics [70,71] and Onsager’s relations. How-
ever, the energy transport equation does not in-
clude a subcontinuum description of heat flow.

Higher in the hierarchy of electron transport
models are Monte Carlo (MC) device simula-
tions [72–74], which track the trajectory of elec-
trons inside the device. The MC method in-
cludes a quantum mechanical description of
electron-phonon scattering, but the electrons
behave as classical particles, obeying Newton’s
laws of motion, in between the collisions. This
semiclassical picture in effect treats the periodic
field of the crystal quantum mechanically and
the externally imposed field classically. Hence,
the electronic states are quantum mechanical,
but the motion of electrons in response to the
field is classical. For a rigorous justification of
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the semiclassical model in the context of elec-
tron transport, we refer the reader to Ref. [75].
In devices with ultrathin bodies such as the one
shown in Fig. 2, long-range Coulomb interac-
tions and quantum effects become important.
The MC scheme must be modified in this case
to include a charge distribution based on the
electronic wave function, which is given by the
Schrodinger equation. [76,77]. For a more com-
prehensive review of charge transport in de-
vices, we refer the reader to Refs. [78] and [79].

4.2 Electron-Phonon Scattering and Heat
Generation

Whatever model one may choose to describe
electron transport, the influence of the lattice
cannot be ignored. Electron-phonon scatter-
ing limits the electron’s velocity, leading to ve-
locity saturation [68]. A rigorous treatment
of electron-phonon scattering is too compli-
cated to implement in practice. A common ap-
proach is to make the rigid ion approximation,
in which the potential field surrounding each
ion is assumed to be rigidly attached to it. The
change in potential due to the motion of ions is
then described in terms of a deformation poten-
tial that is related to the volume change of each
cell. For a discussion on the limitations of this
model as well as a comparison with other mod-
els, we refer the reader to Ref. [16]. We now
discuss electron-phonon interactions in silicon
from the viewpoint of momentum conserva-
tion. Electron transport in solids is analyzed
in the wave vector or the reciprocal space of
the crystal. In n-type silicon, the electrons in-
volved in transport are located at the bottom of
the conduction band [11]. The constant-energy
surface at the bottom of the conduction bands
in silicon consists of six equivalent ellipsoids
along the 〈100〉 directions, as shown in the Bril-
louin zone representation of Fig. 10. The con-
duction band minima occur at about 0.85 of the
distance from the zone center to the zone edge

along these directions [80]. Electron-phonon
scattering can be categorized as intervalley and
intravalley, depending on whether the scatter-
ing moves the electrons within a valley or from
one valley to another in wave vector space.
Intravalley scattering in silicon is entirely due
to acoustic phonons, since optical phonons are
forbidden from energy and symmetry consid-
erations [81]. Intervalley scattering, however,
involves mainly optical and zone-edge acous-
tic phonons. Energetic electrons tend to scat-
ter more with optical phonons, since such pro-
cesses result in a higher energy loss [82]. An
electron must have energy in excess of about 51
meV, the minimum energy of optical phonons
in silicon, in order to emit an optical phonon.

Phonon modes that conserve crystal momen-
tum in intervalley processes have been calcu-
lated by Long [83]. Intervalley scattering re-
quires a large change in the wave vector as
shown by the arrows in Fig. 10. The two
types of electron transitions, labeled g- and f-
scattering, involve scattering between valleys
along the same axis and along different axes,
respectively. In the reduced zone scheme, both
are umklapp processes as shown in Fig 11. The
g process requires a phonon with wave vec-
tor 0.3 × (

2π
a

) 〈001〉. The f process requires a

f−type g−type 

FIGURE 10. The f and g intervalley electronic tran-
sitions [83] are shown in the Brillouin zone of the
crystal
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FIGURE 11. The f and g processes are shown
in a (110)-plane to identify the wave vectors of the
involved phonons. The f-process phonon has the
wave vector qf and the g-process phonon has the
wave vector qg purely from geometry considera-
tions

phonon with wave vector that is 11◦ off 〈100〉.
In the sketch of Fig. 11, the wave vector is ap-
proximately

(
2π
a

) [
0.15, 0.15, 1

]
. Further, sym-

metry considerations [84] based on a zeroth or-
der expansion dictate that only LO phonons
are allowed in a g process and LA and TO
are allowed in an f process. However, it has
been shown by a first-order expansion that low-
frequency TA and LA phonons are also in-
volved in the g process [81]. In fact, scattering
with these modes must be considered in order
to match the mobility data in silicon [80]. The f-
and g-transition picture holds up to moderately
high electric fields (<≈105 V/cm).

Details of electron-phonon scattering, as de-
scribed above, are not captured by the drift-
diffusion and hydrodynamic models. The so-
phistication of a Monte Carlo simulation is
needed to model such microscopic physics.
Pop et al. [82] have computed the spectral dis-
tribution of phonons emitted by hot electrons
at different electric fields. Figure 12 shows the
distribution for a field of 4 MV/m. This de-
tailed information is particularly useful in de-
scribing phonon transport, since it can be used
to specify the source term in a phonon BTE or
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FIGURE 12. Phonon emission from electron scat-
tering at 4 MV/m [82] is shown. The source term in
the BTE may be extracted from this emission spec-
trum

MC framework. We discuss this approach in
greater detail in the subsection on detailed ther-
mal models.

4.3 Coupled Subcontinuum Electrothermal
Modeling

The first of the two categories of electrother-
mal simulations discussed above uses the hy-
drodynamic model for electron transport and
an energy moment of the BTE for phonons.
Fushinobo et al. [36,85] calculated the electron
and the phonon temperatures in submicrome-
ter gallium arsenide devices. They used a sys-
tem of coupled energy equations for the lattice.
Treatment of phonon dispersion was limited
to distinguishing between longitudinal optical
and acoustic phonons, with the optical phonons
assumed to be purely capacitive and all heat be-
ing conducted by the acoustic phonons alone.
The nonequilibrium phonon distribution was
assumed to be isotropic and the model equa-
tions resembled Eq. (9). Each of the three
systems, electrons, LO phonons, and acoustic
phonons was assumed to remain in local ther-
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modynamic equilibrium with well-defined in-
dividual temperatures. Further, electrons were
assumed to couple only with longitudinal opti-
cal (LO) phonons over a single relaxation time
of 100 fs and the energy in LO phonons was
subsequently passed onto a gray distribution of
acoustic phonons over a relaxation period of 10
ps.

Device simulations showed that while the
electron temperature in the device reached
more than 1000 K, the lattice temperature rise
was only about 10 K. Further, the difference be-
tween the LO and the acoustic temperature was
less than 10% of the LO temperature. An in-
teresting observation was that if the gate volt-
age was modulated on a time scale of 10 ps,
electron-LO relaxation would be unaffected but
LO-acoustic relaxation would be retarded. This
would lead to an energy bottleneck in the LO
phonons. Lai and Majumdar [37] adapted the
above model for a bulk submicrometer silicon
device. While their study did not show any sig-
nificant rise in the lattice temperature, the au-
thors found that altering the substrate temper-
ature by 100 K decreased the drain current by
17% and the electron temperature by 8%.

4.4 Detailed Thermal Modeling

In the coupled treatment described above,
the complexity in the phonon dispersion re-
lationship and the anisotropy in the nonequi-
librium distribution are ignored. However,
both of these are crucial in accurately model-
ing phonon transport. In this subsection, we
review electrothermal models where phonon
transport is solved in isolation from electron
transport. In order to extract the heat source
term, electron transport is modeled during the
dynamic period lasting tens of picoseconds,
when the device is being switched from the on-
state to the off-state and vice versa. Thermal
transport is modeled during the off-state when
electrical conditions are static. The focus is on

how the phonon distribution emitted by hot
electrons in the on-state evolves during the off-
state. The thermal problem remains coupled to
electron transport in the sense that the obtained
temperature or phonon distribution is fed back
to the electron transport problem to estimate its
impact on device characteristics.

4.4.1 Phonon Hot Spot in a Device

A detailed consideration of phonon transport
in a device using the BTE-based models de-
scribed in Section 3 shows that the heat gener-
ation region in the device behaves as a phonon
hot spot. A phonon hot spot is defined as a lo-
calized region with a nonequilibrium popula-
tion of high-frequency phonons [86]. The heat
source is spatially localized to within 20 nm
in a bulk device and to nearly 4 nm in a nan-
otransistor, as shown in Fig. 2. Additionally,
the relaxation rate is approximately 0.1 ps for
electrons and on the order of 10 ps for optical
phonons [81,87]. This disparity, coupled with a
strong excitation of optical phonon modes, re-
sults in the heat source having a power density
on the order of 5 W/µm3 in a bulk device. The
small extent and the high rate of phonon gener-
ation in the higher frequencies combine to give
rise to hot spot effects. These are described be-
low.

Chen [28] used the equation for phonon ra-
diative transfer under a gray-body approxima-
tion to show that the thermal conductivity in
the region surrounding a nanoscale heat source
decreases as the ratio of the source size to the
phonon mean free path. The magnitude of this
size effect depends on the degree to which ther-
mal transport in the device is truly ballistic. The
spread in phonon free paths in room tempera-
ture silicon is shown in Fig. 13 as a function of
phonon frequency and polarization. The mean-
free paths for phonons emitted at the hot spot
are also provided. Since the mean-free paths
of the emitted optical and acoustic phonons are
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FIGURE 13. The distribution of free paths in
room-temperature silicon as a function of phonon
frequency and polarization is shown. The mean-
free path of phonons emitted by hot electrons in a
device are also given for comparison. The use of a
gray-body approximation for the heat source leads
to large errors in predicting the magnitude of the hot
spot effect

comparable to the source size, transport is bal-
listic in the vicinity of the hot spot. In addi-
tion to the size, the power density at the hot
spot is also important. If the rate of gener-
ation of phonons that have high frequencies
but relatively low group velocities exceeds the
rate of their decay into phonons with lower fre-
quencies but higher group velocities, there is
a bottleneck to energy propagation from the
hot spot. This leads to severe nonequilibrium
in the high frequency modes. Sinha et al. [38]
have shown that this effect is more important
in nanoscale devices than the above-mentioned
size effect. Since the equivalent temperatures
are locally high in the vicinity of the hot spot,
the size effect is reduced due to the shorter
mean free path of phonons outside the hot spot.
Finally, we note that though we have discussed
hot spots only in the context of silicon, they are
likely to be created in any ballistic device. Elec-
trons traversing the channel of such a device

will scatter inside the contact and create a hot
spot. However, if the contacts are metallic, such
as in carbon nanotube FETs, thermal transport
from the hot spot will be dominated by elec-
trons instead of phonons. The impact of the hot
spot will partly depend on the current density
in the device, which can be quite high in nan-
otube FETs [88]. This needs further investiga-
tion.

4.4.2 Phonon BTE Modeling

Of the three different semiclassical models de-
scribed in Section 3, phonon BTE-based models
have been exclusively used in modeling trans-
port in devices. The reason stems from the
relatively low computational cost of the BTE
compared to MC or MD. Sverdrup et al. [30]
solved a steady-state two-step energy moment
of the BTE for a 400 nm gate length silicon-
on-insulator (SOI) device. Phonons were sepa-
rated into two fluids, one serving as a purely ca-
pacitive reservoir in which all electronic energy
was dissipated, and the other solely responsible
for heat conduction. The two-fluid model in-
dicated that the temperature rise in the device
was 160% higher as compared to that predicted
by solving the heat diffusion equation. Naru-
manchi et al. [34] considered the unsteady prob-
lem under a gray-body approximation to show
that the difference between the solutions to the
BTE and the heat diffusion equation depended
strongly on the boundary conditions. Diffuse
scattering at the boundaries caused a larger de-
viation from the Fourier law. In a separate arti-
cle, Narumanchi et al. [89] extended the energy
moment formulation to include phonon disper-
sion and polarization in the acoustic branches.
As in the above models, the optical branch was
assumed to have a zero group velocity. Al-
though the model accounted for selection rules
that govern phonon-phonon scattering, it did
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not ensure microscopic energy and momentum
conservation. A macroscopic energy conserva-
tion equation was developed in terms of equiv-
alent phonon temperatures. The model exhib-
ited expected behavior in the ballistic and the
continuum limits and was able to predict bulk
silicon thermal conductivity above 300 K with
reasonable accuracy.

All of the models described above are based
on the energy moment of the BTE and do not
include a phonon polarization and frequency-
dependent heat source term. Electron-optical-
phonon coupling is assumed to dominate and
the heat source term is included only in the
equation for optical phonons. Since the mod-
els further assume optical phonons to be purely
capacitive, they tend to exaggerate the tem-
perature rise in the device. Recently, Sinha et
al. [38] have proposed a split-flux BTE model
that solves directly for phonon occupation in-
stead of phonon energy density. The general
approach is similar to a nonlocal formulation
with the phonon departure from equilibrium
having a second-order term. An isotropic dis-
persion relationship that includes all branches
and polarizations is taken into account. The
source term is obtained through detailed Monte
Carlo simulations [82]. The temperature rise
computed from this model is much lower than
the temperature rise from previous BTE mod-
els. This is attributed to the dominance of
phonons with nonzero group velocities in the
emission spectrum. This reduces the thermal
resistance arising from ballistic transport. The
flux due to various phonon branches is shown
in Fig. 14. We note that like previous BTE mod-
els, the split-flux model does not enforce micro-
scopic energy conservation.

Although the Monte Carlo method is yet to
be used for phonons in silicon devices, Lugli
and coworkers [90–92] have performed self-
consistent electron-phonon Monte Carlo sim-
ulations in bulk GaAs, bulk InP, and GaAs-
AlxGa1−xAs heterostructures. However, since
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FIGURE 14. A branchwise breakup of the far-
from-equilibrium heat flux near a hot spot in a bulk
device [38] shows the dominance of LO phonons

the simulations were for polar semiconductors,
only LO phonons were simulated. Their results
indicated that that the phonon population is
driven into severe nonequilibrium during pho-
toexcitation and impedes the relaxation of elec-
trons and holes.

4.4.3 Evaluation of Phonon Relaxation Times
Using MD

A critical parameter in all BTE models is the
relaxation time for phonon-phonon scattering.
Since the contribution of optical phonons to
thermal conductivity is much less than that of
acoustic phonons, the evaluation of relaxation
rates for optical phonons has not received much
attention in the literature. However, these rates
are critical in modeling transport near device
hot spots since the hot spot has a higher pop-
ulation of optical phonons. Sinha et al. [3]
have used parallel MD to investigate anhar-
monic scattering of optical phonons at device-
like hot spots. The hot spot is modeled as
a wave packet, shown in Fig. 7. Figures 15
and 16 show the evolution of hot spots phonons
observed using MD. The energy in different
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phonon modes may be computed by Fourier
analysis of the atomic displacements at any
given time. This method allows identification
of decay channels for hot spot phonons and the
computation of relaxation rates. In another re-
cent MD study, McGaughey and Kaviany [66]
used a solid argon system to investigate the va-
lidity of the single mode relaxation time ap-
proximation used in BTE models. They showed

FIGURE 15. Snapshots of anharmonic phonon
scattering at a 2 eV hot spot observed in parallelized
MD simulations are shown. The axial displace-
ments are plotted on the left and the correspond-
ing energy distribution in real space is plotted on
the right. The x-axis shows the axial location. The
snapshot at the top is taken just before scattering is
initiated. As scattering proceeds, phonons of vari-
ous modes are created, corresponding to the lumps
on the left and the peaks on the right, and propagate
from the hotspot at different group velocities
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FIGURE 16. The distribution of energy in the
phonon spectrum is shown at various times during
the decay of phonons at a hot spot with 50 eV energy

that relaxation rates may be directly obtained
from MD calculations without requiring fitting
parameters used in thermal conductivity mod-
eling.

4.5 Outstanding Issues in Electrothermal
Modeling

Compared to the maturity of electron transport
modeling in devices, phonon transport model-
ing is still in the process of development. Key
contributions in this area are summarized in Ta-
ble 1. Despite the progress made in the past
decade or so, there remain numerous outstand-
ing issues in electrothermal modeling, espe-
cially in the context of nanotransistors. The first
concerns the use of realistic phonon dispersion
relationships in BTE-based models and phonon
MC. The phonon dispersion relationship in
strained materials and ultrathin films [14] has
been shown to differ from that of the bulk.
The impact of phonon confinement in thin films
and nanowires [93] on electrothermal transport
needs further investigation. Another important
issue is the impact of surface phonon modes or
surfons [94] in highly confined device geome-
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TABLE 1. Key contributions on subcontinuum electrothermal simulations are summarized.
The nomenclature used is as follows. BC: Boundary condition; T: Temperature;
QW: Quantum well; Combination 1: Adiabatic top surface and isothermal sub-
strate; Combination 2: Layout specific heat loss to contacts and substrate; h: heat
transfer coefficient

Approach Dispersion Approx. Device/Material Key Result
Sample Ref. Thermal BCs Electron Transport

Energy moment Two-fluid 0.2 µm GaAs MESFET Toptical ≈Tacoustic

BTE [85] h=103 W/m2K Coupled, hydrodynamic Telectron weakly influenced by h
Energy moment Two-fluid 0.3 µm bulk Si Increase in substrate temperature

BTE [37] Combination 1 Coupled, hydrodynamic reduces drain current
Energy moment Two-fluid 0.4 µm SOI Tlattice, peak is 160% higher

BTE [30] Combination 1 Decoupled, hydrodynamic than Tdiffusion, peak

Non-local Isotropic 90 nm bulk Si LO phonons with non-zero group velocity
BTE [38] Combination 2 Decoupled, MC dominate transport near hot spot

Monte Carlo Gray LO GaAs, InP, QWs Non-equilibrium phonon distribution
[91, 92] – Coupled, MC impedes cooling of photoexcited electrons

tries such as the FINFET. Interfacial phonon
transport [95,96] remains another area of con-
cern, especially in three-dimensional structures
with numerous interfaces between novel mate-
rials.

Quantum interference effects become impor-
tant at the nanometer length scale. As shown
in Fig. 5, transport in such mesoscopic sys-
tems is modeled in terms of either the Lan-
dauer formalism [97] or using the nonequilib-
rium Green’s function (NEGF) [98] approach.
The former approach applies to ballistic trans-
port between two reservoirs, which results in a
quantized thermal conductance. The more gen-
eral NEGF formalism includes scattering and
may be thought of as the quantum analogue of
the BTE. There is very little literature on heat
transport in mesoscopic systems, and this is an
important area for future research. As a start,
the Landauer and the NEGF formalisms have
been used to investigate heat transport in meso-
scopic systems in Refs. [99] and [100], respec-
tively.

5. LINKING MULTIPLE SCALES IN
THERMAL TRANSPORT

While thermal transport in devices and nanos-
tructures involves multiple length scales, the
coupling of length scales has not received much
attention in electrothermal modeling. The fo-
cus has been mostly on the development of
methods for subcontinuum length scales. The
boundary conditions in electrothermal simu-
lations are typically obtained using simplify-
ing assumptions about the geometry for heat
conduction outside the device [101]. How-
ever, boundary conditions have been shown to
strongly affect the lattice temperature inside the
device [37,38]. An accurate treatment of bound-
ary conditions requires linking subcontinuum
thermal transport by phonons inside the de-
vice to the continuum heat diffusion outside the
device. A multiscale approach that links a fi-
nite volume or finite element method with the
phonon BTE or MC needs development in the
near future. Such a framework already exists
for MD in the context of mechanics problems
such as crack propagation [102]. The extension
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of methods such as the coupling of length scales
(CLS) [103] and the coarse-grained MD [104] to
thermal transport needs investigation.

6. CONCLUDING REMARKS

In this paper, we have reviewed the emerg-
ing field of subcontinuum thermal simulations
of semiconductor devices. As device dimen-
sions are increasingly reduced below 100 nm in
the coming decade, thermal modeling will as-
sume more importance in device design. Start-
ing from a basic overview of heat conduction
by phonons, we have discussed three principal
methods for investigating phonon transport:
the phonon Boltzmann transport equation, sta-
tistical Monte Carlo methods, and molecular
dynamics. Most of the past modeling ef-
fort at the device level has revolved around
the phonon BTE. Device simulations using the
phonon BTE show that the small size of the heat
source and the high rate of volumetric energy
dissipation in the lattice leads to the formation
of a phonon hot spot. Transport in the vicin-
ity of the hot spot is ballistic, leading to im-
peded heat conduction. The resulting temper-
ature rise exceeds that calculated from the heat
diffusion equation. However, the deviation be-
tween the two depends on the degree to which
the phonon dispersion relationship is modeled.
Energy moment formulations that assume all
heat to be generated as optical phonons with
zero group velocities predict the difference to
be as high as 160%. However, detailed Monte
Carlo simulations of electron-phonon scatter-
ing show that the hot spot is dominated by op-
tical phonons with nonzero group velocities. If
this nonequilibrium source distribution is in-
cluded in a BTE formulation, LO phonons are
found to dominate the heat flux close to the hot
spot and the deviation is reduced to as low as
13% in a bulk device.

While past effort focused on the phonon BTE,
molecular dynamics and Monte Carlo meth-

ods are fast gaining importance. These ap-
proaches avoid the many simplifying assump-
tions in a BTE formulation, but are computa-
tionally prohibitive for current devices. As de-
vices continue to diminish in size in future,
these methods will become increasingly feasi-
ble. While the MD method is fairly well devel-
oped, phonon MC needs more theoretical de-
velopment, particularly in terms of improved
treatment of phonon-phonon scattering and en-
ergy/momentum conservation schemes. An
important assumption in all thermal modeling
of semiconductor devices so far has been the
use of a bulk dispersion relationship. Clearly,
in devices whose body thickness is only sev-
eral atomic layers, phonon dispersion changes
dramatically [14] and surface effects become
important. This poses a significant challenge,
since data on phonon dispersion in silicon thin
films is not available in the literature. Measure-
ment of phonon dispersion in ultrathin films is,
thus, an important step for the future. Addi-
tionally, lattice dynamical models for ultrathin
films need to be developed in parallel.
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