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Eric Pop® and Robert W. Dutton
Department of Electrical Engineering, Stanford University, Stanford, California 94305

Kenneth E. Goodson
Department of Mechanical Engineering, Stanford University, Stanford, California 94305

(Received 1 December 2003; accepted 12 July 2004

We describe the implementation of a Monte Carlo model for electron transport in silicon. The model
uses analytic, nonparabolic electron energy bands, which are computationally efficient and
sufficiently accurate for future low-voltag€<<1 V) nanoscale device applications. The
electron-lattice scattering is incorporated using an isotropic, analytic phonon-dispersion model,
which distinguishes between the optical/acoustic and the longitudinal/transverse phonon branches.
We show that this approach avoids introducing unphysical thresholds in the electron distribution
function, and that it has further applications in computing detailed phonon generation spectra from
Joule heating. A set of deformation potentials for electron-phonon scattering is introduced and
shown to yield accurate transport simulations in bulk silicon across a wide range of electric fields
and temperatures. The shear deformation potential is empirically determirgg=#t8 eV, and
consequently, the isotropically averaged scattering potentials with longitudinal and transverse
acoustic phonons arfg, ,=6.39 eV and1,=3.01 eV, respectively, in reasonable agreement with
previous studies. The room-temperature electron mobility in strained silicon is also computed and
shown to be in better agreement with the most recent phonon-limited data available. As a result, we
find that electron coupling witlg-type phonons is about 40% lower, and the coupling Aitipe
phonons is almost twice as strong as previously reporte@0@ American Institute of Physics

[DOI: 10.1063/1.1788838

I. INTRODUCTION the increasing sophisticated treatment of the electron energy
bands over the years, the phonon dispersion relation is still

The Monte CarlagMC) method is regarded as the most commonly simplified in practical device simulators. The
comprehensive approach for simulating charge transport ielectron-phonon scattering is usually computed with a single
semiconductors. An early standard was set by the work oflispersionless acoustic mode and with goea few fixed-
Canali et al’ and Jacoboni and Reggianising analytic, energy optical modes. This paper presents a MC model
ellipsoidal descriptions of the energy-band structure. Ovewhich uses complete analytical descriptions for both the
the past two decades, the research community has added relectron band structure and the phonon dispersion relation-
merous enhancements, including more comprehensive phyship. The approach is computationally efficient on modern
cal models, more efficient computer algorithms, new scatterdesktop workstations and suitable for simulating electron
ing mechanisms, boundary conditions, electrostatic selftransport in future, low-voltage technologies, while describ-
consistency in device simulations, etc. A significanting the electrons and phonons with comparable accuracy.
enhancement of the physical models was the introduction of Figure 1 shows a brief historical overview of various
full electron energy bands from empirical pseudopotentiaMC simulation methods for charge transport in silicon.
calculations®*

For device operating voltages near 5V, the full band _

. . T A

MC method has been very useful with high-energy transportg ©
simulations, including impact ionizatiol?, where details of E Full dispersion — th?k?;o”
the full band structure are essential. As device dimensions-g Current work | .
are scaled into the nanometer range and supply voltages ar§ LA+TA dispersion 'T:'jscmefrt;

. . @ i ischel
reduced below the material’s band gép1 V for silicon), =) fixed optical (LA only)
the role of |mp§ct ionization is greatly d_|m|n|shed. _Transport_ g LA no dispersion Conall Jacoboni2 Tang®
at lower energies can be adequately simulated with analytic2 fixed intervalley anall Yamada® Sano®
band models. Hence, simpler, faster analytic band MC code: >
. . . . . Analytic Analytic Full band
(including quantum mechanical corrections where required (parabolic) (non-parabolic)
by confined dimensionscan be employed as engineering Electron Band Model

design tools for future nanoscale devices. In addition, despite
FIG. 1. Historical context of various Monte Carlo models for electron trans-

port in silicon. The computational burden increases for full beamet full
¥Electronic address: epop@alum.mit.edu dispersion simulations.

0021-8979/2004/96(9)/4998/8/$22.00 4998 © 2004 American Institute of Physics

Downloaded 18 Nov 2008 to 171.64.49.29. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp


http://dx.doi.org/10.1063/1.1788838
http://dx.doi.org/10.1063/1.1788838
http://dx.doi.org/10.1063/1.1788838

J. Appl. Phys., Vol. 96, No. 9, 1 November 2004 Pop, Dutton, and Goodson 4999

Canali et al® introduced the first multivalley model with and cannot be used to compute phonon generation rates for
parabolic, ellipsoidal bands and phonon scattering with aletailed phonon dynamics simulatiofesg., phonon Boltz-
single dispersionless longitudinal acousficA) mode and mann transport or molecular dynamjc#n a realistic elec-

six fixed-energy intervalley phonons. Jacobati al® ac-  tron device, a full phonon dispersion is essential for extract-
counted for analytic band nonparabolicity and slightly al-ing the correct phonon generation spectrum from Joule
tered Canali's set of phonon deformation potentials. A fewheating%5

years later, Brunettt al.” introduced a new set of deforma- In what follows, we describe the implementation of a
tion potentials, more closely matching available data on théMlC code which uses analytic descriptions for both the elec-
anisotropy of electron diffusion in silicon. This phonon tron bands and the phonon dispersion. In the context of Fig.
model was used by Jacobosti al®in an excellent and fre- 1, the current isotropic analytic phonon model lies on the
quently referenced review of the MC methdend it subse- Vvertical axis between the anisotropic bond-charge dispersion
quently became the set of phonon energies and deformationethod®™ and all the other traditional approaches. This
potentials most often employed in the literature over the pastomputationally efficient method is suitable for simulating
two decades. Yamadat al® also introduced scattering with low-voltage nanodevices, while treating the electron bands
the first-order intervalley phonons. Tang and Hessre the  and the phonon dispersion with equal attention.

first to incorporate the full band structure of silicooom-

puted from empirical pseudopotentigl®or MC transport.  1l. IMPLEMENTATION

However, they used the simple phonon model of Canali/
5’ ;ﬁgit:;rfg:opr?)srzr?gﬁses d:?g?gg%g?%;‘gﬂ?ﬁg';ngrrgzgiter'charge transport in semiconductors have been well described

7 . : before?®!’In brief, the ensemble MC approach used in this
al.” Sanoet al. introduced the wave vector-dependent ImpaCtWork reselects several tens of thousands “superparticles” to
ionization rates in a full band MC formulatidbut computed P perp

. . . . represent the mobile charge inside the semiconductor. This
the phonon scattering rates with the multivalley deformation I . .

. . 1 number is limited by computational and memory constraints,
potentials of Canaléet al.

- . . : : . but good statistics can be obtained if the simulation is run for
Realistic device simulations using electrostatically self-

. i : .an adequately long time. The particles are initialized with
consistent full band MC were first performed by Fischetti P P "
, .~ thermal energy distributions or based on the initial conditions
and Laux’ They were also the first to make the distinction 9y

7 . read from, for example, a drift-diffusion device simulator.
:Jet\mﬁen Iongatughna{LA) and t.ranlsverselet(':oudsllﬂEEA) In- ¢ The superparticles are treated as single carriers during their
ravafiey scatlering using a simpe anaiylic dispersion 10f. flights and as charge clouds when the Poisson equation
both modes. Fischer and Hofm&npointed out the poor

_— . . is solved. A fictive “self-scattering” rate can be chosen in
definition of energy “valleys” in the context of full band

. . such a way that the sum of all scattering rates is constant and
models and .used only two gveraged deformation IOOtent'a|§f1dependent of the carrier energy. The distribution of free
one for the fixed-energy optical phgnons_and anpthgr for th‘ﬁight times is directly related to this total scattering rte.
acoustic phonongLA, but not TA), including their disper- o o5ch particle, a random number is drawn to determine its

sion. Thg mf?,St sophisticatetlzl MC models for tgg Charg‘?ime of free flight. During this time, the carrier is allowed to
transport in silicon were developed by Yoder and Heasd drift under the influence of the electric field. Then, another

L 11
Kunikiyo et al.™> They employed the full band structure com- random numbéf is drawn and compared with cumulative

puted from empirical pseudopotentials and the falhiso- oapiities of scattering, which have been precomputed as

tropic) phonon dispersion obtained from an adiabatic bond, ,nction of energy. A scattering mechanigeng., with im-

charge model. The _electron—phonon scattering rates WeIS rities, acoustic or optical phononis selected in propor-
calculated as a function of energy and wave Vector, Consisjgp, g the strength of each process. If self-scattering is se-
tently with the band structure and the phonon dispersion. I teq the particle continues its free flight unimpeded. If a
the absence of any adjustable parameters, mobilities comaa seattering process is selected, the particle’s energy and
puted with theseb initio models are typically less accurate ., omentum are adjusted as necessary and another random
than those computed using more empirical simulators. Suchine of flight is drawn. This procedure then repeats for all
codes also present formidable computational burdens, refy, icies. Statistics are gathered by sampling the superpar-
derl_ng them |mp_rac_t|cal for simulations of reallstlc_deVIces.tide system at regular time intervals, until the targeted accu-
Their only applications have been for very detailed bulk ey s reached. The error margins are inversely proportional

transport calculations. _ _ to the square root of the number of superparticles being
Most MC codes found in practice today employ a so-gmlated.

phisticated, full description of the electron energy bafafs

ten including quan_tum eﬁed@, yet scattering rates and €N A Electron Band Model

ergy exchange with the lattice are only computed with a

simplified phonon dispersioff:** The phonon energies and This work models the electron energy bands analytically,
the deformation potentials most often used are those origifollowing Jacoboni and Reggiafnand including the nonpa-
nally introduced by Brunettet al.” Optical phonon disper- rabolicity parametera (=0.5 eVl at room temperatuye
sion is ignored and often only one acoustic braficA) is ~ With «=0 the kinetic energy is purely parabolic and the
considered for intravalley scattering. Such models can leadriginal model of Canalet allis recovered. All six ellipsoi-

to unphysical thresholds in the electron distribution function dal, energetically equivalent conduction-band valleys of sili-

The general aspects of the Monte Carlo method for
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FIG. 2. Conduction-band density of statd30S) in Si from a full band

calculation(courtesy C. Jungemapns. the DOS computed with the non-
parabolic band approximation.

con are explicitly included. The nonparabolic band approxi-
mation represents a good description of electron transport at
energies below approxmatgly Lev, Sl.JCh as Fho.se (.)f fuwr(%lG. 3. Electron distribution in momentum space, for an electric field of
IOW'VO|tage nanOIeChnOIOQ'eS’ where Impact lonization an 0 kV/cm in the (111) direction, at 300 K. Higher energy electrons are
high-energy transport are not expected to play a significarghown with lighter shades of gray.

role. Figure 2 shows a comparison between the total

conduction-band density of stat€BOS) computed in the jteq to 1 eV during the simulation. In fact, this upper limit on
nonparabolic band approximation and the full band densityhe electron energy is a convenient value for several reasons:
of states. The relationship between the electron en&gy () it is the approximate energy difference betweenlttend

and the wave vectorg (i=1, 2 or 3, for the three Cartesian the X valleys, (b) it is also about the value of the silicon
axeg is energy band gap, which controls impact ionization, édt

523 (k)2 conveniently corresponds to an upper limit on the maximum
Ex(l+aE)=—2> M (1)  electron energy in low-voltage future nanodevices, which
2i2 m will operate at 1 V or below. Since electrons with energies

larger than the band gap will be rare, impact ionization is not

wherem is the component of the electron mass tensor along,ynected to play a significant role and consequently, it can be
the ith direction andk,; represents the coordinates of the safely neglected.

respective conduction-band minimum. Silicon has six
equivalent conduction-band minima near tKesymmetry
points, located at +0.85 of the distance from the middle t
the edge of the Brillouin zone, along the three axes. For The present work treats all phonon scattering events in-
example, theX valley along th100) direction is centered at elastically, hence, the electrons exchange the correct amount
(0.85,0,0G, where|G|=27/a is the reciprocal lattice vec- of energy(corresponding to the absorption or emission of a
tor anda=5.431 A is the silicon lattice constant. The massphonon with each scattering event. Particular attention is
tensor components are the longitudinal masstm,=0.916 paid to the treatment of inelastic acoustic phonon scattering
and the transverse mass/my=0.196 at room temperature, to properly account for energy dissipation at low tempera-
wheremy is the mass of the free electron. We also include thaures and low electric fields. Treating the acoustic phonons
temperature dependence of the band Bafl) analytically, inelastically is also important for heat generation spectrum
following the review of Green? This dictates a slight tem- calculations:® Figure 3 and the inset of Fig. 4 illustrate the
perature dependence of the transverse massmgsy  ellipsoidal conduction-band valleys and the allowed phonon
=0.196,/Eg(T) and of the nonparabolicity parameter as scattering transitions. As in the traditional analytic-band
a=0.5E g,/ Eg(T) eVL, whereEg, is the silicon band gap at approactf, scattering with six types of intervalley phonons is
room temperaturég. Figure 3 shows a typical “snapshot” of incorporated. Intervalley scattering can begfype, when
the electron distribution in momentum space, as representeglectrons scatter between valleys on the same axis, e.g., from
by the current work. Electrons that exit the first Brillouin (100) to (-100), or of f type when the scattering occurs
zone(drawn with dotted lines in Fig.)3are reflected back between valleys on perpendicular axes, e.g., f(@&®0 to
into the opposite conduction-band valley. (010).20 Intravalley scattering refers to scattering within the
Since it uses the analytic nonparabolic band approximasame conduction-band valley and usually involves only
tion, suitable for low-energy studies, the present work ig-acoustic phononzsl.
nores the second conduction baftke L valley) of silicon, Most typical MC code$;”°both analytic- and full-band,
which lies slightly more than 1 eV above the bottom of ¥he treat intravalley scattering with a single kind of acoustic pho-
valley. Hence, the maximum electron energy is usually lim-non. This simplification is accomplished by grouping the

OB. Phonon Scattering Model

Downloaded 18 Nov 2008 to 171.64.49.29. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 96, No. 9, 1 November 2004 Pop, Dutton, and Goodson 5001

guadratics are entirely sufficient for this isotropic approxima-
tion. They track the phonon dispersion data closely, espe-
cially in the regions relevant to electron-phonon scattering in
silicon: near the Brillouin zone center for long wavelength
intravalley acoustic phonons and near the frequencies corre-
sponding to intervalleyf- andg-type phonons. The quadrat-
ics are also easy to invert and, where needed, to extract the
phonon wave vector as a function of frequency.

The same approach can be used to extend this phonon
dispersion model to other materials or confined dimensions.
Changes in the phonon dispersion due to a strain or confine-
ment (e.g., in nanostructurgcan be easily included. The
challenge in this case lies chiefly in determining the correct
modified phonon dispersion to use in such circumstances.
The electron-phonon scattering rates need to be numerically
recomputed with the modified phonon descripti@s out-
lined below, which can be done efficiently if the dispersion
is written as a set of analytic functions, like the polynomials
in this paper.

Frequency o [rad/s]
Energy [meV]

1 1 1 0
0 0.2 04 0.6 0.8 1
qa/2x (100) C. Intravalley Scattering

FIG. 4. Phonon dispersion in silicon along ti®0) direction, from neutron The total intravalley scattering rate is calculated sepa-

scattering datasymbolg. (see Ref. 37 The lines represent our quadratic ately with the LA and TA phonons, as a function of the
approximation. Thé andg phonons participate in the intervalley scattering initial electron energye,
of electrons(See Ref. 20

D2 1 1_1
Ii(Ey = a—hm;' —(Nq + > + §>I§q3dq, (3)
longitudinal acoustigLA) and the transverse acoustitA) Amph ks q wq

branches into a dispersionless mode with a single velocityhare D, is the respective deformation potentid, , or

and a single deformation potential. Unlike the traditional ap-DTA) md=(mtzm|)1/3 is the electron density of states effective
proach, this work considers scattering with LA and TA mass, ang is the mass density of silicon. The top and the

modes separately. Each phonon dispersion branch from Figyom signs refer to phonon absorption and emission, re-
4 (including the optical modgss treated with the isotropic  gpectively. The electron wave vector is transformed to

approximation spherical Herring-Vogt space as

Wy = 0yt v+ cf, 2 Ks= V2myE(1 + aE)/A. (4)

whereay is the phonon frequency anglis the wave vector. Since the scattering rates are numerically integrated at the

For acoustic phonons, the parameteyandc can be chosen beginning of the simulation, the correct phonon occupation

to capture the slope of the dispersion near the Brillouin ZON&._ 1 be incorporatedy,=1/(explfiwy/keT)~ 1), without re
N~ q’ "8 ' i

tcerlge][ a;d_rtrr]we rr;]aglmur}"n frequentcy a]E th? zoqedgdgle, S;'.’n'l‘lasrorting to the equipartition or Joyce-Dixon approximations
0 el 9. The choice of parameters for fongitudinal optica normally used. The wave function overlap integral is in-
(LO) phonons insures that they meet the zone edge LA fre-

guency. For both the TA and transverse opticalO) Cluded in the rigid ion approximatidii
phonons, the zone edge slope, i.e., their group velocity is fit 3 . B

to zero. The continuouglongitudina) and dashedtrans- (qu)g[sm(qu) qRcodaRy], )
versg lines in Fig. 4 represent these quadratic approxima-

— 1/3 ; i i
tions, and the fitting coefficients are listed in Table I. QuarticWhere RS__a[S/(l&T)] is the rg@us of the s-,phencal
polynomials would offer a better it in theL00) crystal di- Wigner-Seitz cellR;=2.122 A for silicon. All quantities are

rection but no advantage in the other directions, hence, theumerically evaluated using the corresponding phonon dis-
persion. The scattering rate integral in E8§) is carried out

over all phonon wave vectors that conserve both energy
(Ex=Exthwy) and momentuntk’=k+q). These arguments
can be used to establish the range pfas required by

I4=

TABLE I. Quadratic phonon dispersion coefficients.

, Vg C

108 rad/s 16 cm/s 108 cn/s |COS(¢)|$1’ where
LA 0.00 9.01 ~2.00 - -4, Miwg
co = + 1+a2E thw 6
A 0.00 5.23 226 P== 2K ﬁqks[ (2Bt fig)] ©)
LO 9.88 0.00 -1.60 _ I
T0 10.20 257 111 and ¢ is the angle between the phonon and initial electron

wave vector. As in the rest of this paper, the top and the
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TABLE Il. Summary of intervalley phonon energies and deformation potentials for electrons in silicon.

Deformation potentiald;(10° eV/cm)

Type T(K) E(meV) Canaliet al. (Ref. 1) JoergenseliRef. 36 Brunettiet al. (Ref. 7 Yamadaet al. (Ref. 8 This work

f, TA 220 19 0.15 — 0.3 2.5 0.5
f, LALO 550 51 3.4 43 2 — 3.5
s TO 685 57 4 2 2 8 1.5
0 TA 140 10 0.5 0.65 0.5 — 0.3
9 LA 215 19 0.8 — 0.8 4 15
s LO 720 62 3 7.5 11 8 6

bottom signs refer to phonon absorption and emission, reelectron mobility(hence, the original confusion over the cor-
spectively. The intravalley scattering rate typically cited inrect choicg, it was shown that only the lattéE4=1.1 eV}
the literaturé can be recovered by substituting,=v.0, Z,  Yields the correct mobilities both for electrons and héfes.
=1 and using an approximation fb, which allows Eq(3)  This is the value adopted in the current study. We then use
to be integrated analytically. E, as a fitting parameter, while calculating the low-field,
The final state of the electron after scatterifigf k') low-temperature (T=77 K) electron mobility, a regime
reflects both the energy and momentum exchange with thdominated by scattering with intravalley phonons. An em-
phonon, as follows: first, the value qgfis selected within the pirical best-fit value of=Z,=6.8 eV is found, in reasonable
allowed range using a rejection algoritﬁrapplied to the agreement with previous work. With these valuessgfand
integrand in Eq.(3), which includes the overlap integral. =,, the isotropically averaged deformation potentials are
Then the magnitude of the electron wave vedtérafter D ,=6.39 eV andD;,=3.01 eV. These are comparable with
scattering is found by energy conservation, whereas ththe value of 9 eV typically cited in the literature for MC
angle betweek’ andk is obtained by momentum conserva- models where scattering is only taken into account with the
tion. The final electron state is only accepted if it falls within longitudinal mode$.
the first Brillouin zone, otherwise, the rejection algorithm is
repeated.
The intravalley deformation potentials have a generapy Intervalley Scattering

angular dependence, which can be writteff as
As outlined in Sec. Il B, intervalley scattering in silicon

Ea(0) =Eqg+ E,cos 6, (7)) can take electrons between the equivaleptype) and non-
_ o equivalent (f-type) valleys. Based on geometrical
Sra(6) =Esin 6 cos b, (8)  argumentg? both thef- and g-type scattering are Umklapp

where# is the angle between the phonon wave vector and th rocesses involving a reciprocal lattice vec(@=2m/a.

longitudinal axis of the conduction-band valley,, is the ince thex-valley mi”i”?a are located at 0.85 from the c_:ente_r
shear, andE, is the dilation deformation potential. Detailed tol tr;e edge of tthe B”"ooug]SZgge’ t?e ;:r:ange regw_red n
calculations have shown that the influence of this angula‘ra ectron momentum i£0,0.85,0.83G for f-type scattering

dependence on the electron transport is relatively sthall. and (1.7,0,0G for g-type scattering. Reduced to the first

Hence, the intravalley deformation potentials can be aver—BrIIIOUIn zone, the phonons involved ar@,0.15,0.13G

. 7 .. °
aged over the angl@ consistently with the general isotropic and(0.3,0,0G, respecnvelﬁ Thef phonon is just 117 off

approach adopted in this work. The isotropically averagec]he(loo) direction, whereas thg phpnon is along100 aF
deformation potentials become 0.3G. These phonons are schematically drawn on the disper-

sion relation in Fig. 4. Theg-phonon frequencies can be

T o — 3 directly read off thg100) dispersion, whereas tHephonons
Dia= 5| Rat Ra=ut g5 ) (9 are typically assumed to be those at the edge of the Brillouin
zone. In this workw, is computed from the analytic phonon

— dispersion, and the intervalley scattering rate can be written
NT 2,16

Dra= Rt (10)  as follows®

. . . . TAGZ; 1_1
which are used for computing the intravalley scattering rates  T'if(Ey) = pan Ng + 575 Jaf(Ex = frarg), (11

in Eq.(3). There is considerable variation in the values of the q
shear(Z,) and dilation(Z,) deformation potentials reported whereZ; is the number of available final valley4 for f-type

in the literature over the years. A good summary of theseand 1 forg-type scattering gq:(E) is the density of states in
values can be found in Ref. 25: various theoretical and emthe final valley, and the other symbols are the same as pre-
pirical studies have estimated, in the range from 7.3 to viously defined. Intervalley scattering can also include an
10.5 eV, whereas=Ey has been previously cited both as overlap factor, but its value is typically incorporated into the
-11.7 eV (Ref. 26 and near 1.1 eMRef. 25. Although, scattering constan;;. The six phonons involved in interval-
perhaps surprisingly, both values can be used to descridey scattering, along with their approximate energies, equiva-
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10 — No Disp2” 10 10 10 10
5 - Iso. Disp. (this work) Electric field [V/em]
1 ' ' hd 10 ' ' '
0 0.02 004 0.06 0 0.02 004 0.06 FIG. 6. Electron drift velocity vs. electric field in unstrained silicon over a

(@) Energy [eV] (b) Energy [eV] wide range of temperatures. Symbols are the Monte Carlo simulations of

this work. The lines represent the time of flight experimental data of Canali
FIG. 5. Electron distribution vs. energy @) 77 K and(b) 300 K with low (see Ref. 1
applied electric field(200 V/cm). The typical dispersionless modéebee
Refs. 2 and Yis compared with the results of this work, which include the
full isotropic dispersion. Note the vertical axes are not at the same scale. mentum conservation for all scattering events.

Despite the added complexity of the full phonon disper-
sion, this analytic band code is more than an order of mag-
nitude faster when compared to typical full band programs

Traditional MC models(apart from theab initio ap-  (USNG @ simpler phonon descriptiordoing the same
proaches of Refs. 10 and Jlassume that the phonon ener- velocity-field curve calculations, i.e., Fig. 6. A version of the
gies involved in intervalley scattering are fixed at the Va|uescode_compl_led_usmg f'X_Ed phonqn en_ergy_values and without
determined by transitions between thevalley minima. the dispersion informatiotessentially identical to the one of
Also, the state of the electron in the final valley is computedX€f- 2 was only a few percent faster than our model, which

isotropically? These geometrical arguments only hold Includes the dispersion. Hence, this work incorporates the
strictly for the lowest energy electrons at the bottom of thePionon dispersion in an efficient way, giving significantly
bands. This work takes into account the phonon dispersiofre Physical insight than the typical analytic band code for
for scattering with both the optical and acoustic phonong/€"Y little: computational overhead, while still being more
when calculating the final state of the electron. After the typdh@n an order of magnitude faster than a typical full band
of intervalley scattering mechanism is determined, the Statgc’de' The af‘a'YF'C phonon dispersion and th'e analytic glec-
of the electron in the final valley is first chosen isotropically, tron bands significantly sp_eed up the calculations of the final
as in the traditional approach. The phonon wave vector neclectron state after scattering, compared to the look-up tables
essary for this transition can be calculatedqask’ -k, be- and interpolation schemes found in full band codes. Further
cause the initial state of the electron is known. The phonon iSP€€d improvements can be obtained by including an energy-
then reduced to the first Brillouin zone and its energy isdePendent total scattering réfewhich would significantly

obtained using the phonon dispersion described earlier. Thi§duce the number of self-scattering events.

procedure is applied to both the acoustic and optical

phonons. The phonons that do not satisfy both the energy ar]ﬂ. APPLICATIONS

momentum conservation within a certain tolerance are dis-

carded with a rejection algorithm. This is a relatively inex- The electron transport characteristics at moderate to high
pensive search that ends when a suitable phonon is founflelds and for all but the lowest temperatures are determined
The effect of this algorithm is to smear out any “hard” by the choice of intervalley coupling constants;. This
thresholds associated with intervalley phonon energies in thehoice also determines the relative strength of theand
electron distribution. Figure 5 shows the low-field g-type intervalley scattering. Several sets of coupling con-
(200 V/cm electron distribution computed with this ap- stants previously proposed are listed in Table Il. The param-
proach, compared to the typical models found in theeter set introduced by Brunetét al” has been the most
literature®” where the intervalley phonon dispersion is notcommonly used in the literature over the past two decades,
taken into account. Any unphysical threshold, e.g., affor both analytic and full band simulations. This parameter
62 meV due tog-type optical intervalley scattering, is re- set strongly favorg-type scattering with the 62 meV LO
moved when phonons of varying energies around this valuphonon, whereas the original set of Canetiial® tends to

(as given by the dispersion relation and by energy and mofavor f-type scattering with zone edge phonons. It should be
mentum conservatignare allowed to participate. Such noted that the zone eddgephonon at 51 meV is typically
thresholds in the electron distribution are also present in fultlassified as part of the LA branch, but this scattering can
band MC models, which use a single, fixed-energy opticahlso happen with LO phonoﬁé‘,because the two branches
phonon? The current model removes them in a computation-meet at the zone boundary. Since the current work takes into
ally inexpensive way, while satisfying the energy and mo-account both the acoustic and optical dispersion, when this

lent temperaturegas T=%w,/kg), and deformation potential
scattering constants are listed in Table II.
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f-type scattering event is selected, the participating phonon
is assigned to the LO branch|K’ —k|>2m/a, and to the LA
branch otherwise.

—
o
o
T
!

—
o
N
T
1

A. Bulk Si Mobility

The intervalley scattering constants for the current
model are derived starting from the set of Brunettal.” To
aid with parameter extraction, an inverse modeling code
originally developed for doping profile extraction was modi-
fied and used® The intervalley scattering parameters were
extracted over a wide range of temperatures and electric
fields, by comparison with the available transport ddfh.
Low energy phonons typically control the low-field and low- FIG. 7. Electron drift mobility simulation and data over a wide range of
temperature mobility. Increased coupling constants with lowjemperatures. Open symbols are data from Ca(s#ie Ref. 1.closed sym-

h lead to | drift velociti dl | bols are data from Gregsee Ref. 19 The solid line was simulated with the

energy phonons lead to lower drift velocities and lower elecrent Monte Carlo method.
tron energies, both in the low-fieltinear) and the high-field

(saturation region. The effect is the same in the low-field ) o
region when increasing the high-energyptical or f-type tron drift mobilities near 3000 cftVs at room temperature

LA) coupling constants. On the other hand, increased col!2ve been reported Sgr’glstrained silicon modulation-doped
pling constants with high-energy phonons lead to higher drifStructure§MODFETS."""These mobilities are phonon lim-
velocities in the high field region, while the average energy/t€d at oom temperature, because remote impurity scattering

decreases. In other words, cooling the electron distributio®y Plays & role at much lower temperatures. Also, the
through high energy phonon emission leads to higher velocil2ttice-matched strained silicon layer guarantees a lack of
ties, because at higher energies, the electron velocity is cupurface roughness scattering on both its sides, unlike in
tailed by nonparabolicity, which increases the effective masStrained metal-oxide-semiconduct®4OS) inversion layers,

by a factor of(1+2aE,). The low and high-energy interval- where surface scattering with the oxide interface dominates.

ley coupling constants have the same effect on the drift velt is thi_s lack of direct impurity scafctering and of interfa<_:e
locity at low fields, but opposing effects at high fields. This scattering that makes such modulation-doped structures ideal

opposite dependence of the velocity on low and high-energ{Pr exploring phonon scattering in strained silicon. The high

intervalley phonons determines the “shape” of the Vebcity_mobilities observed in such MODFETs cannot be explained

field curves(see Fig. 6 and can be used to fine-tune the with _the intervalley scat.tering parameters 05f Ref. 7, as they
coupling constants. Since phonons involved in intervalley€duire @ strongef-type intervalley .coupllné. , o
scattering have different energies, the inverse modeling 'ncorporating strained silicon in the MC simulation is
method can distinguish between the contribution of the varif€latively straightforward. The biaxial strain removes the de-
ous parameters to the velocity-field curves. Most notably, #&neracy of the conduction band, lifting four of the Six

smaller contribution of the-type LO phonon is found with a  Valleys by AE=0.67, Vé/herex_ is the Ge fraction in the
deformation potential approximately 40% lower than theS1-<C& buffer substraté.The in-plane conductivity effec-
value reported by Brunettet al’ (see Table . For the tive mass of the two lower valleys is the lighter transverse
f-type scattering, the deformation potential of LA/LO is MasSm of silicon. The difference in energy between the
found to be stronger than that of TO phonons, which is conl'onequivalent valleys also means thaype intervalley scat-
sistent withab initio calculation<® tering is strongly reduced as the fractianincreases. For
The temperature dependence of the low-field mobility= 0-15, the energy splitting is large enough to almost com-
can be used to fine-tune the low energy intervalley phono!€tely suppress-type scattering between the lower and the

parameters, assuming that impurity scattering can be neiPPer valleys at room temperature, and the strained silicon
glected. Figures 6 and 7 show the results of the transpoff'Pility énhancement is dominated by conduction via the
simulations using the current set of parameters, which arfV0 lower valleys with the lighter transverse mass. This ex-
listed in Table II. Note the wide range of electric fields andP!ains the apparent “saturation” of the mobility for values of

temperaturegfrom 30 K to 600 K covered by the simula- x>0.15 in Fig. 8. It should be noted that the transverse elec-
tions and their comparison with the transport data. The curl’on mass is slightly increased by the presence of stfain,

rent model agrees with this data well within the experimentaf-9-M=0.199mp atx=0.3, and this is taken into consider-
error. ation in the current model. The mobility enhancement of the

strained compared to that of the unstrained silicon is illus-
trated in Fig. 8. The “usual” parameter Seannot account
for the mobility enhancement observed experimentally. The
Strained silicon transport data was not available wherstrained mobility data suggests a stronger coupling witH the
the original sets of intervalley coupling constants listed inphonons, and consequently a wealkgphonon coupling.
Table 1l were proposed. As the technology for growing This, along with the fine tuning explained earlier, ultimately
defect-free strained silicon layers on top of S&e buffers  narrows down our choice of parameter sets to that listed in
was perfected, record mobilities have been measured. Elethe last column of Table Il, which was used to generate all

Electron drift mobility [cm>/V/s]
S
w
1

100
Temperature [K]

B. Strained Si Mobility
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FIG. 8. Room-temperature electron mobility in strained silicon grown on
Si;_,Ge,. Mobilities computed with this modékolid line), with the param-
eter set of Ref. {dashed lingand the record phonon-limited mobility data
from Ismail, Nelson and co-worker(see Refs. 30 and 31
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