Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices

Lee, H., Agonafer, D. D., Won, Y., Houshmand, F., Gorle, C.,  Asheghi, M., Goodson, K. E., 2016, "Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices," Journal of Electronic Packaging, Vol. 138, 010907.  

Download PDF

Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) dissipate high power densities which generate hotspots and cause thermomechanical problems. Here, we propose and simulate GaN based HEMT technologies that can remove power densities exceeding 30 kW/cm2 at relatively low mass flow rate and pressure drop. Thermal performance of the microcooler module is investigated by modeling both single and two-phase flow conditions. A reduced order modeling approach, based on an extensive literature review, is used to predict the appropriate range of heat transfer coefficients associated with the flow regimes for the flow conditions. Finite element simulations are performed to investigate the temperature distribution from GaN to parallel microchannels of the microcooler. Single/two-phase conjugate CFD simulations provide a lower bound of the total flow resistance in the microcooler as well as overall thermal resistance from GaN HEMT to working fluid. A parametric study is performed to optimize the thermal performance of the microcooler. The modeling results provide detailed flow conditions for the microcooler in order to investigate the required range of heat transfer coefficients for removal of heat fluxes up to 30 kW/cm2 and a junction temperature maintained below 250°C. The detailed modeling results include local temperature and velocity fields in the microcooler module, which can help with identifying the approximate locations of the maximum velocity and recirculation regions that are susceptible to dryout conditions.

Related Projects

The development of high performance heat exchangers has enjoyed a long tradition of research at Stanford University dating back to the early work by Kays and London (Compact Heat Exchangers, 1984)...
Micro- and nanotechnology have revolutionized the design opportunities, and the relevant fundamental transport phenomena, associated with heat exchangers. Much progress has been motivated by heat...