Zipping, Entanglement, and the Elastic Modulus of Aligned Single-Walled Carbon Nanotube Films

Won, Y., Gao, Y., Panzer, M.A., Xiang, R., Maruyama, S., Kenny, T.W., Cai, W., and Goodson, K.E., 2013, "Zipping Entanglement, and the Elastic Modulus of Aligned Single-Walled Carbon Nanotube Films," Proceedings of the National Academy of Sciences, Vol. 110, pp 20426-20430.

Download PDF

Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and
entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties.

Related Projects

Carbon nanotubes offer unusual thermal, mechanical, and electrical properties, which vary with chirality, geometry (multiwall vs single-wall), and length. They are promising for a variety of...
Thermal interface materials (TIMs) play a central role in the performance and reliability of electronic systems. They are the route for thermal conduction between semiconductor chips and metal heat...
Hotspot mitigation, thermal management paths, and thermomechanical degradation are key challenges for 3D integration, in particular due to the increased quantity and complexity of "thermally...