Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials

Bozorg-Grayeli, E., Reifenberg, J.P., Panzer, M.A., Rowlette, J.A., and Goodson, K.E., 2011, "Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials," IEEE Electron Device Letters, Vol. 32, pp.1281-1283.

Download PDF

The programming current required to switch a phase-change memory cell depends upon the thermal resistances in the device. In many designs, significant heat loss occurs through the electrode. This letter investigates the thermal properties of a multilayer electrode stack. This material offers greater thermal resistance than single-material electrodes due to the presence of multiple thermal boundary resistances (TBRs), reducing heat loss from the device and potentially lowering the programming current. Picosecond time-domain thermoreflectance interrogates the temperature-dependent thermal conductivity of three as-deposited and postannealed electrode materials: carbon, titanium nitride, and tungsten nitride. These data are used to extract the temperature-dependent, as-deposited, and postannealed TBR in two multilayer electrode stacks: carbon-titanium nitride and tungsten-tungsten nitride. The C-TiN stacks demonstrate an as-deposited TBR of 4.9 m2K/GW, increasing to 11.9 m2K/GW  postanneal. The W-WNx stacks demonstrate an as-deposited TBR of 3.9 m2K/GW, decreasing to 3.6 m2 K/GW postanneal. These resistances are equivalent to electrode films with thickness  on the order of tens of nanometers.

Related Projects

Phase change memory (PCM or PCRAM) is based on rapid, thermally-induced phase transitions in Ge2Sb2Te5 (GST) and related compounds. Because the phase change is induced by temperature changes, thermal...
Interface thermal transport is arguably the leading fundamental challenge for the design and implementation of advanced nanostructure technologies for energy conversion, computation, and data storage...